
© CAST. All rights reserved. Page 1 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

This is the fourth report produced by CAST on global trends in the structural quality of

business application software. The data are drawn from CAST’s Appmarq Repository which

contains structural quality analyses of large, multi-layer, multi-language business

applications. These reports highlight trends in five structural quality characteristics, or health

factors: Robustness, Security, Performance Efficiency, Transferability and Changeability. The

report identifies factors that affect the structural quality of applications.

CRASH Report
2017 Global Sample

CAST Research on Application Software Health

Global trends in Software Structural Quality

© CAST. All rights reserved. Page 2 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Executive Summary

This is the fourth in a series of reports produced by CAST providing benchmarks on the

structural quality of IT applications developed across the globe. This benchmark was

developed from 1850 applications consisting of 1.03 BLOC (billions of lines of code),

distributed across 329 organizations and 8 countries.

From a technology standpoint, this sample is predominantly made of Java-EE (40%), COBOL

(22%), and .NET (10%), along with numerous other technologies such as ABAP, JSP, Oracle

Server, PHP, etc. The sizes of these applications are spread widely, with more than 228

consisting of over a MLOC (million lines of code). The size of an application had negligible-to-

no relation to its structural quality.

This report describes the effects of different development factors on structural quality.

Structural quality differed across technologies with COBOL and Oracle Server generally

having the lowest scores and JEE generally having the highest scores. Applications in CMMI

Level 1 organizations had lower scores than those in Level 2 or 3 organizations. Factors

associated with higher scores included use of hybrid development methods (combining up

front design with rapid feedback from iterations), teams with 10 or fewer members, and

greater than 5,000 end users.

© CAST. All rights reserved. Page 3 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Table of Content

1 Introduction to CRASH Reports ... 6

1.1 Health Factors... 6

1.2 Scoring the Health Factors.. 7

2 The CRASH Sample ... 8

2.1 Application Size .. 8

2.2 Technology .. 9

2.3 Industry Segment .. 11

2.4 Type of Application System ... 13

3 Structural Quality .. 16

3.1 Global Trends .. 16

3.2 Relationships among Health Factors ... 17

3.3 Relations of Health Factors to Size ... 19

3.4 Violation-Level Observations ... 20

3.5 Case Study: Code unit vs system-level violations ... 22

4 Factors Affecting Structural Quality ... 24

4.1 Industry Segment .. 24

4.2 Technology ... 30

4.3 Type of Application System ... 36

4.4 Source ... 41

4.5 Shore ... 42

4.6 Geographical Region .. 44

4.7 Organizational Maturity ... 45

4.8 Development Method .. 48

4.9 Team Size ... 49

4.10 Number of Users ... 51

5 Conclusions .. 53

5.1 Summary of Results .. 53

5.2 Recommendations .. 55

About CAST .. 56

CAST Research Labs ... 56

The CAST Application Intelligence Platform ... 56

Contact ... 57

© CAST. All rights reserved. Page 4 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

About CAST’s Appmarq Repository

Appmarq (www.appmarq.com) is CAST’s application quality benchmarking repository. Over

the past decade, CAST has analyzed the structural quality of thousands of business

applications across different industries. These industries span telecommunications,

insurance, financial services, national and local governments, retail, manufacturing, and

many other IT-intensive sectors. The data have been collected and anonymized from

organizations primarily across Europe, North America, and India.

The data in Appmarq provide unique insight into the structural quality trends of business

application software. With Appmarq benchmarking services, companies can benchmark the

structural quality of their applications against that of their peers in the same industry, or

against applications developed with similar technologies, to identify strengths, weaknesses,

and areas for improvement based on their structural quality characteristics.

The Appmarq Repository contains structural quality data on 2,200 applications from 400

organizations, totaling over 2 billion lines of code. The structural quality analyses were

performed against over 1,200 rules of good architectural and coding practice in the areas of

Robustness, Security, Performance Efficiency, Changeability, and Transferability.

2,200
applications

400+
organizations

2B+
lines of code

1,200+
quality rules

http://www.appmarq.com/

© CAST. All rights reserved. Page 5 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

About the Authors

Bill CURTIS

Senior Vice President, Chief Scientist

Dr. Bill Curtis is an industry luminary who is responsible for influencing CAST’s

scientific and strategic direction, as well as for helping CAST educate the IT

market on the importance of managing and measuring the quality of its

software. He is best known for leading development of the Capability Maturity

Model (CMM) which has become the global standard for evaluating the

capability of software development organizations. Bill has a passion for

software analysis and measurement because, after improving the development

process, it is the next wave of software engineering improvement.

Michael MULLER

Appmarq Product Owner at CAST

Michael Muller is a 15-year veteran in the software quality and measurement

space. His areas of expertise include code quality, technical debt assessment,

software quality remediation strategy and application portfolio management.

As part of his scope, Michael manages the Appmarq product and the

benchmark database, and is part of the CAST Research Labs analysis team that

generates the industry-renowned CRASH reports.

Lev LESOKHIN

Executive Vice President, Strategy and Analytics

Lev Lesokhin, CAST EVP of Strategy and Analytics, is responsible for CAST's

market development, strategy, thought leadership and product marketing

worldwide. He has a passion for making customers successful, building the

ecosystem and advancing the state of the art in business technology.

Nagaraja S. ADIGA

Application Data Manager

Nagaraja Adiga has several years of experience in the field of Data Analytics. At

CAST, Nagaraja works as an Application Data Manager for the Appmarq’s

repository.

https://fr.linkedin.com/in/mullermichael
https://fr.linkedin.com/in/mullermichael
https://www.linkedin.com/in/levlesokhin
https://in.linkedin.com/in/s-nagaraja-adiga-17916155

© CAST. All rights reserved. Page 6 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

1 Introduction to CRASH Reports

This is the third CRASH report produced by CAST Research Labs on global trends in the

structural quality of business application software. The data were drawn from CAST’s

Appmarq Repository which houses data collected during system-level structural analyses of

large business applications. Structural quality refers to the engineering soundness of the

architecture and coding of an application, rather than to the correctness with which it

implements the customer’s functional requirements. Structural quality is occasionally

referred to as non-functional, technical, or internal quality.

1.1 Health Factors

Structural quality is measured by detecting violations of rules representing good

architectural and coding practice in each of five areas called health factors defined in Table 1.

Scores for health factors are computed on a scale of 1 (low/poor) to 4 (high/good) by

analyzing the application to detect violations of over 1200 rules of good architectural and

coding practice distributed across these five health factors as shown in Table 1.

Health Factor Definition Quality Rules

Robustness
Robustness measures the likelihood of outages, the

difficulty of recovery and the possibility of data

corruption linked to poor coding practices.

546

Security
Security measures violations of secure coding practices

that allow unauthorized entry, deceptive interactions,

theft of data, or breach of confidentiality.

333

Performance

Efficiency

Efficiency measures the likelihood of potential

performance degradation and inefficient use of

resources such as processors, memory and networks

linked to poor coding practices.

244

Changeability
Changeability measures the difficulty of modifying

applications, adding features, correcting errors, or

changing the application’s environment.

603

Transferability
Transferability measures the difficulty of transferring

work, or the difficulty of understanding the application

and becoming productive in working with it.

601

Table 1. Health Factor definitions and number of rules

https://www.appmarq.com/public/index.php?healthfactor=robustness
https://www.appmarq.com/public/index.php?healthfactor=security
https://www.appmarq.com/public/index.php?healthfactor=efficiency
https://www.appmarq.com/public/index.php?healthfactor=changeability
https://www.appmarq.com/public/index.php?healthfactor=transferability

© CAST. All rights reserved. Page 7 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;
Evaluating an application for violations of structural quality rules is critical since they are

difficult to detect through standard testing. Structural quality flaws are the defects most

likely to cause operational problems such as outages, performance degradation,

unauthorized access, or data corruption. CRASH reports provide an objective, empirical

foundation for discussing the structural quality of software applications throughout industry

and government.

1.2 Scoring the Health Factors

Scoring begins by creating a compliance ratio for each quality rule that compares the number

of times the rule was violated to the number of opportunities in the source code where the

rule could have been violated. This approach is similar but not identical to six sigma scoring

schemes in that it identifies all structural elements within an application where various

quality rules apply. In computing a score for each health factor, each quality rule contributes

a specific weight based on its compliance ratio, its severity, and its impact on the specific

health factor. Quality rules are divided between two levels of analysis:

 Code-level rules: These are rules evaluated at the code-unit level inside a class,

method, sub-routine, module, or other foundational code unit. Violations at this level

typically involve coding hygiene issues and simple defects.

 System-level rules: Architectural rules whose evaluation involves multiple

components often spread across several layers of the application. These violations

are difficult or impossible to detect through ordinary testing. They are typically the

culprits that cause outages, security breaches, data corruption, and difficulty in

sustaining or scaling the application.

Quality scores are first computed at the code-unit level and then aggregated to the

application level. The health factor scoring scheme was designed to accentuate operational

risk and cost. Thus, a single violation with the highest severity rating can have as much impact

on lowering a Health Factor score as a collection of lower severity violations.

© CAST. All rights reserved. Page 8 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

2 The CRASH Sample

The CRASH data drawn from the Appmarq Repository include 1,850 applications submitted

by 329 organizations for analysis. In the aggregate, these applications totaled 1.03 BLOC

(billion lines of code). The submitting organizations are located primarily in Continental

Europe (France, Belgium, Italy, Germany, and Spain), the United Kingdom, North America

(the United States and Canada) and India. The sample includes applications written primarily

in COBOL, Java-EE, .Net, Oracle Server, and other technologies such as PHP, C/C++,

PowerBuilder, C#, and Visual Basic.

2.1 Application Size

The lower threshold for accepting applications into this CRASH sample was 10 KLOC (kilo or

thousand lines of code). Figure 1 divides the sample into size categories wherein 26% of the

applications contain between 10 KLOC and 50 KLOC, 32% contain between 50 KLOC and 200

KLOC, 30% contain between 200 KLOC and 1 MLOC, and 12% contain more than 1 MLOC,

including 28 applications over 5 MLOC and 7 over 10 MLOC.

Figure 1. Distribution of application sizes for the full sample

© CAST. All rights reserved. Page 9 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;
Distributional statistics for the full CRASH sample are presented in Table 2. The mean of

554,783 LOC is almost 4 times larger than the median size of 146,359 LOC, indicating the

sample is extremely positively skewed by the applications over 5 MLOC, the largest of which

contained 52,773,950 lines of code. The extreme positive skewness of this sample is further

revealed by the standard deviation being three times larger than the mean score and almost

13 times larger than the median score. In addition, the mean size is above the third quartile,

indicating the heavy effect of a few extremely large programs. The 52 MLOC application was

written in RPG and will not appear in many of the analyses in this report since they focus on

factors affecting the most frequently used technologies.

Table 2. Distributional statistics for lines of code for the full CRASH sample

The sample is widely distributed across size categories and appears representative of the

various types of applications in business use. However, the applications submitted for

structural analysis and measurement tend to be business-critical systems, so we do not claim

that this sample is statistically representative of the population of business applications

globally. Rather, this sample appears most1representative of the mission-critical subset of

business applications. Not surprisingly, a sample weighted toward business-critical

applications would contain some of the largest applications in an organization’s portfolio.

2.2 Technology

As presented in Figure 2, COBOL and Java-EE (JEE) are the most frequently used technologies

in the CRASH sample, with 40% and 22% of applications having been developed in these

technologies respectively. The large sample of COBOL applications results from the large

proportion of applications from the financial services and insurance industries. Other

technologies involved in more than 40 applications in the CRASH sample included .NET,

ABAP, Oracle Server, C, and C++. Thirteen percent of the sample was distributed across a

range of technologies, of which C# and JSP alone account for over 30 applications each.

© CAST. All rights reserved. Page 10 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Figure 2. Distribution of applications across technologies in the CRASH sample

As evident in Figure 3, there are differences in how the technologies are distributed across

size categories. Data are presented for the four technologies with the largest number of

applications—Java-EE, COBOL, .NET, and ABAP. For applications with no more than 20,000

LOC, the highest percentages are in Java-EE and .Net. For applications with more than 1

MLOC, COBOL and ABAP have the highest percentages. In fact, the percentage of ABAP

applications tends to increase with their size, to a high of 24% for applications with over 1

MLOC. Most Java-EE applications fall into the range of 20 KLOC to 500 KLOC. The percentage

of .NET applications increases up to 500,000 and declines thereafter.

© CAST. All rights reserved. Page 11 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Figure 3. Distributions across size categories for Java-EE, COBOL, .NET, and ABAP

Descriptive statistics for these applications are presented in Table 2. The mean size of

applications in the full sample is 554,782 lines of code. However, since the median size is

146,359, the sample is positively skewed by the extreme sizes of several very large

applications. The largest average sizes are in COBOL and ABAP applications, while the

smallest average sizes are in Oracle Server, .NET, and Java-EE. The two extreme outliers in

the sample are written in RGP300 and consist of approximately 33 and 52 MLOC.

2.3 Industry Segment

The 2016 CRASH sample includes applications from 329 companies in 12 industry segments.

These applications are displayed in Figure 4 by the number of applications and the number

of contributing organizations in each segment. One third of the sample comes from financial

services, 13% comes from insurance, and 12% from telecommunications. All other industry

segments account for less than 10% of the sample. Applications that could not be classified

by industry or were in segments with fewer than 10 applications are included in the category

labelled ‘Other’.

The distribution of languages across applications within each industry segment is presented

in Table 3. Use of Java-EE, the most common technology in the CRASH sample, is widely

distributed across all industry segments. Conversely, COBOL, the second most common

© CAST. All rights reserved. Page 12 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;
technology in the CRASH sample is primarily used in financial services and insurance. .NET

and Oracle Server were used in all industry segments. ABAP was primarily used in

manufacturing and utilities. Having been developed in Bell Labs, it is not surprising that the

highest use of C and C++ was in telecom and the next highest use of C was in utilities.

Figure 4. Frequency of applications and organizations in each industry segment

© CAST. All rights reserved. Page 13 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Table 3. Frequency of applications by technology within industry segments

2.4 Type of Application System

The type of system was listed for 1,388 applications. Table 4 provides the total frequencies

of system types and how these types are distributed by technology. Frequencies are not

displayed for technologies with too few applications, so the technology columns will not sum

to the frequency for the total sample. The most frequent system types in the CRASH sample

were Core Transaction Systems and Enterprise Resource Planning systems. Core Transaction

Systems were most frequently written in COBOL, and to a lesser extent Java-EE. Enterprise

Resource Planning systems were often written in Java-EE, and of course ABAP. Customer-

facing websites were most frequently written in Java-EE, but surprisingly 18% were written in

COBOL. Enterprise Portals, Customer Resource Management, and Analytics systems were

primarily written in Java-EE.

© CAST. All rights reserved. Page 14 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Table 4. Frequency of application type by technology

Table 5 presents the frequencies of each system type within each industry segment.

Applications with no listed industry segment are not included, so columns will not sum to

the total frequency for each system type. Core transaction systems are concentrated most

heavily in the financial services and insurance industries. ERP systems are widely spread

across all industry segments, but are most heavily concentrated in manufacturing, telecom,

and utilities. Customer-facing websites are most heavily concentrated in financial services

insurance and telecom, while internal portals are most frequent in financial services,

telecom, and manufacturing. Analytics systems were most frequent in financial services and

telecom.

© CAST. All rights reserved. Page 15 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Table 5. Frequency of application type by industry segment

Table 4 demonstrated there is a strong relationship between system type and the technology

used to develop it. Table 5 shows a relationship between industry segment and system types.

These observations suggest that differences between industries in structural quality may be

more attributable to the mix of application types than to the qualities of the industry.

© CAST. All rights reserved. Page 16 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

3 Structural Quality

3.1 Global Trends

Comparisons of scores across Heath Factors is inexact because different numbers of rules

were defined for each. Since the scoring system partially mitigates these differences, we can

be gain some insight into the general structural quality trends. The mean scores for the five

Health Factors are displayed for the full CRASH sample in Table 6. Means for the operational

risk factors of Robustness, Security, and Performance Efficiency were higher than those for

the cost/maintainability issues of Changeability and Transferability.

Table 6. Mean Health Factor scores for the global sample

Box and whisker charts comparing the distributions of technology scores on the five Health

Factors are presented in Figure 5 along with an explanation of how to these charts should

be interpreted in this report. While the pattern of means is evident, the most striking

observation from this chart is the large variance in scores. While the interquartile ranges

varied from 0.4 to 0.6 in width, the 2 sigma limits above and below each mean are quite

large. Even more dramatic, the range of scores for each Health Factor is extended by outliers.

Although the means for Security and Performance Efficiency were high, the variance in their

scores was quite large, as evidenced by their larger interquartile range (the barrel from the

1st to 3rd quartile that contains 50% of the data points for that category). While some

applications achieved the highest scores attainable on Security and Performance Efficiency,

several applications achieved scores that were low on these Health Factor scales.

© CAST. All rights reserved. Page 17 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Figure 5. Distribution of Health Factor scores in the total sample

3.2 Relationships among Health Factors

Table 7 presents the strength of relationships among pairs of Health Factors. For easier

comparison, correlation coefficients were squared into the percentages of common

variation in scores shared by each pair. Since the pattern of relationships differs between

technologies, results are presented for COBOL and Java-EE.

In COBOL, there are two clusters of Health Factors that were confirmed in a factor analysis.

The first cluster includes the operational risk factors of Robustness, Security, and

Performance Efficiency, where the relationships accounted for between 41% and 76% of the

variation in scores. The second factor includes the cost/maintainability factors of

Changeability and Transferability, which shared 49% of the variation in their scores. The

relationships between the Health Factors in these two clusters never accounted for more

than 6% of the shared variation, except for the moderate relationships of Robustness with

the Changeability and Transferability.

The pattern of relationships is quite different in Java-EE and .NET. With the exception of

Security, moderate-to-strong relationships existed between all of the Health Factors where

the shared variation ranged from 29% to 58% in Java-EE and from 25% to 40% in .NET.

Security, which had smaller relationships with Performance Efficiency and Transferability in

Java-EE and with Changeability and Transferability in .NET.

© CAST. All rights reserved. Page 18 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Table 7. Percentages of variation accounted for between Health Factors

The difference in these patterns of relationships may result from fundamental changes in

programming style from older technologies such as COBOL to more modern technologies

such as Java-EE. In COBOL, modules tend to be quite large—often 10 times larger than those

in Java-EE and other more modern languages. Further, since they are quite often used in

transaction processing systems on mainframes, they have been optimized for reliability,

© CAST. All rights reserved. Page 19 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;
speed, and security. Such use often comes at the expense of ease of change and

understanding. Modern technologies such as Java-EE have been constructed to support

object-oriented programming where components such as classes and methods are much

smaller than COBOL modules. When properly engineered, smaller components are easier to

understand and change, and thus the relationships between operational risk factors and

cost/maintainability factors are stronger, as seen in Table 7.

3.3 Relations of Health Factors to Size

Correlations between the size of applications and their Health Factor scores are presented

in Table 8 for the total CRASH sample and separately for each technology with at least 40

applications. Although some of the correlations are significant because of the large sample

size, they are uniformly low. Only five of the correlations indicated that size accounted for as

much 4% of the variation in Health Factor scores, and none accounted for more than 6%.

Table 8. Correlations of Size with Health Factors in the total sample and by technology

To help visualize these relationships, Figure 6 presents the scatterplot for the largest

correlation in Table 7, which is -0.24 and which indicates a small negative relationship

between lines of code and Transferability. Visually the variation appears random around the

mean and even the effect of the application being large, with over 2.7 MLOC does not change

the small negative relationship. Scatterplots for the other correlations appear similar to

Figure 7, indicating that size has a very weak relation with the structural quality of

applications. This observation was replicated across technologies.

© CAST. All rights reserved. Page 20 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Figure 6. Scatterplot of the relationship between size and Transferability in .NET

3.4 Violation-Level Observations

Violation-level data were available from a maximum of 1,353 applications. As presented in

Table 9, just over 97 million violations of quality rules were detected in these applications.

However, there were over 1.3 billion opportunities in the source code where the rules could

have been violated. Thus, source code structures were found to be in non-compliance with

relevant quality rules in only 7.4% of the instances in which they applied.

© CAST. All rights reserved. Page 21 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Table 9. Non-compliance and process sigma levels for quality rule violations

System-level rules were violated in only 6.07% (1,172,064 violations) of the more than 19

million total opportunities where system level rules applied in these applications. Recent

research found that system-level violations often account for approximately 10% of total

violations. However, these system-level violations can account for over 50% of corrective

maintenance costs.2

Of the 97 million violations of quality rules, only 1.6% are rated as critical. However, the

quality rules underlying these critical violations exhibited a much higher compliance rate

(99%) than the quality rules for non-critical violations (92%). Among the Health Factors,

compliance was higher for the operational risk factors of Robustness, Security, and

Performance Efficiency than it was for the compliance ratios for the cost factors of

changeability and transferability. In general, compliance with quality rules was greatest

2 Li, et al. (2011). Characteristics of multiple component defects and architectural hotspots: A large

system case study. Empirical Software Engineering, 16 (5), 667‐702

© CAST. All rights reserved. Page 22 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;
where the risk was highest (i.e. with system-level violations, critical violations, and violations

related to business risk Health Factors).

Table 7 also reports process sigma levels computed as defects per million opportunities. The

process sigma level is computed as a standard score representing the number of standard

deviations out on a distribution of defects per million opportunities. The popular six sigma

notation indicates that at 6 standard deviations out, there are only 4 defects per million

opportunities. In these data, the highest scores are between 3 and 4 sigma. In most cases,

software technology and practice are not sufficiently advanced to achieve six sigma levels.

Based on these data, most IT organizations should strive to achieve scores between 3.5 and

4 sigma for business- or mission-critical applications.

3.5 Case Study: Code unit vs system-level violations

In Table 9, system-level violations account for only 6.07% of the total violations analyzed in

this CRASH Report. However, industrial experience and research have demonstrated that

they have a disproportionate effect on operational risks and corrective maintenance costs.

The distinction between system and code unit-level violations is important since most static

analysis technologies only detect code unit-level violations. Code unit-level violations most

often involve the Changeability and Transferability weaknesses that affect ease of

maintenance and not operational risks such as Robustness and Security.

This system vs. code unit-level distinction is highlighted in a case study from one of the

organizations contributing applications to Appmarq. A large consumer brand with

thousands of developers, multiple ADM vendors, and hundreds of large applications

embarked on a program to manage code quality. They focused first on code quality at the

code unit level. After running the unit-level quality program for two years, they initiated

system-level analysis. When they measured the quality of their business-critical applications,

they found that, as shown in Figure 7, their earlier remediation efforts had primarily achieved

more maintainable software. Health Factor scores for operational risk factors of Robustness,

Security, and Performance Efficiency were significantly lower. In fact, all Health Factor scores

were significantly lower than those reported for the full Appmarq sample in Table 6. In

particular, the scores for the operational risk factors of Robustness, Security, and

Performance Efficiency were far lower than those of the global sample.

© CAST. All rights reserved. Page 23 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Figure 7. Case study Health Factor scores

These results were not surprising because system-level issues are more often related to

Robustness, Security, and Performance Efficiency. Code unit-level quality analyses most

often detect hygiene issues that affect maintainability, but cannot detect the flawed

interactions among components across the system that affect reliability, security, and

performance. Although system-level violations account for a small percent of the total

violations detected, their detection is critical to creating a full account of the flaws that

potentially affect reliability, security, and performance during operations.

© CAST. All rights reserved. Page 24 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

4 Factors Affecting Structural Quality

This section presents analyses of various factors that can influence structural quality. As will

be demonstrated in Section 4.1, there are significant differences among the technologies

used in developing applications in the CRASH sample. Since different numbers of quality

rules were defined for each technology, comparisons among Health Factor scores across

technologies are not exact. A few comparative observations will be made among

technologies, but in later sections the analyses will be conducted within single technology

categories. Consequently, analyses of factors that influence structural quality will only be

conducted within technologies when there are at least 20 applications in each category of

the factor under analysis.

4.1 Industry Segment

Differences among mean scores on each Health Factor for the ten industry segments with at

least 40 applications in the CRASH sample were compared in an analysis of variance

(ANOVA). Statistically significant differences (p < .001) in means were observed between

industry segments for all five Health Factors. However, as reported in Table 10, differences

among industry segments never accounted for more than 4% of the variation in scores. Table

10 summarizes the mean scores for each of the industry segments on each Health Factor.

The following paragraphs describe in greater depth the distribution of scores and which

industry segments were responsible for the significant differences.

© CAST. All rights reserved. Page 25 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Table 10. Means and variance explained in Health Factors by industry segment

Robustness. Differences among the ten industry segments accounted for only 4% of the

variation in Robustness scores. Post hoc tests revealed the primary differences occurred

between government, which earned the highest mean score and financial services, which

earned the lowest mean score. However, as we can see in Figure 8, financial services

displayed wide variation, containing both the highest and lowest Robustness scores. In fact,

the median for financial services was closer to that of other industries, indicating that the

greater proportion of scores at the lower end of the financial services distribution is primarily

responsible for the Robustness mean being lower than that of other industries.

© CAST. All rights reserved. Page 26 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Figure 8. Distribution of Robustness Scores by Industry Segment

Security. Differences among the ten industry segments accounted for only 3% of the

variation in Security scores. Post hoc tests revealed the primary differences occurred

between government with the highest mean score with the lowest variance, while financial

services, telecommunications, and retail posted the lowest mean scores. However, as we can

see in Figure 9, there were wide variations in Security scores in many industries—especially

in financial services, which contained both the highest and lowest Security scores.

© CAST. All rights reserved. Page 27 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Figure 9. Distribution of Security Scores by Industry Segment

Performance Efficiency. Differences among the ten industry segments accounted for only

4% of the variation in Performance Efficiency scores. Post hoc tests revealed that the primary

differences occurred between government and IT consulting, which had the highest mean

scores, and financial services, manufacturing, energy, and insurance, which had the lowest

mean scores. However, as can be seen in Figure 10, there were wide variations in Security

scores in many industries with the largest being observed in financial services. Several

industries earned very high scores, while utilities earned the lowest.

© CAST. All rights reserved. Page 28 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Figure 10. Distribution of Performance Efficiency Scores by Industry Segment

Changeability. Differences among the ten industry segments accounted for only 4% of the

variation in Changeability scores. Post hoc tests revealed that the primary differences

occurred between government, which had the highest mean score (3.25) and the other

industries, which had means clustered between 2.97 and 3.08. As is evident in Figure 11,

variance was moderate among Changeability scores.

Figure 11. Distribution of Changeability Scores by Industry Segment

© CAST. All rights reserved. Page 29 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Transferability. Differences among the ten industry segments accounted for only 2% of the

variation in Transferability scores. Post hoc tests revealed that the primary differences

occurred between government, which had the highest mean score (3.25) and financial

service and utilities, which had mean scores below 3.0. Figure 12 reveals very similar patterns

for all industry segments on Transferability.

Figure 12. Distribution of Transferability Scores by Industry Segment.

Summary. With the exception of government applications, knowing the industry in which an

application was developed provided little information about its Health Factor scores.

Financial services tended to have lower scores across all of the Health Factors, but this was

probably because of its greater proportion of COBOL-based core transaction systems, which

was evident in Tables 3, 4, and 5 in Section 2. However, financial services showed wider

variation than other industries in its scores for the operational risk factors of Robustness,

Security, and Performance Efficiency. In each of these cases, it contained both the highest

and lowest scores.

The primary factors affecting structural quality are beyond the industry segment since it

explains little of the variation in Health Factor scores. The next sections will explore other

factors that may be more influential in affecting structural quality.

© CAST. All rights reserved. Page 30 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

4.2 Technology

Differences among mean scores on each Health Factor for the seven technologies with at

least 40 applications in the CRASH sample were compared in an ANOVA. Among the analyses

presented in this section, the analysis of technologies is the least exact since different

numbers of rules were evaluated for different technologies. Even so, the scoring algorithm

used in computing the Health Factor scores provided some correction for differences in the

number of rules.

Even with the caveat about rule differences among technologies, we can still draw some

interesting observations. Large and statistically significant differences (p < .001) in means

were observed between technologies fora all five Health Factors. Table 11 summarizes the

mean scores for each of the technologies on each Health Factor. The following paragraphs

will describe in greater depth the distribution of scores, which technologies were responsible

for the significant differences, and why the percentage of variation accounted for by

technology was smaller in Security and Transferability.

Table 11. Means and variance explained in Health Factors by technology

Robustness. Differences among the seven technologies accounted for 20% of the variation

in Robustness scores. Post hoc tests revealed that the primary differences occurred between

Java-EE, .NET, and C++, which had higher means and COBOL, Oracle Server, and C, which had

lower means. The mean for ABAP rested between these two clusters of high and low means.

© CAST. All rights reserved. Page 31 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;
As we can see in Figure 13, COBOL and Oracle Server both displayed wide variation, with

COBOL earning both the highest and lowest Robustness scores.

Figure 13. Distribution of Robustness Scores by Technology

Security. Differences among the seven technologies accounted for only 3% of the variation

among Security scores. Post hoc tests revealed that the primary differences occurred

between C++, ABAP, and C, which had higher means and COBOL and Oracle Server, which

had lower means. The means for Java-EE and .NET rested between these two clusters of high

and low means. As we can see in Figure 14, COBOL and Oracle Server both displayed wide

variation, with COBOL containing both the highest and lowest Security scores. In fact, even

though COBOL had the largest percentage of scores below 3.0, it also had the largest

percentage of scores above 3.5. Although COBOL applications are often among the most

secure, some receive extremely low Security scores, which reduces the overall mean. These

large variations among scores within several technologies are the reason that only 3% of the

variation in Security scores was explained by differences in technologies.

© CAST. All rights reserved. Page 32 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Figure 14. Distribution of Security Scores by Technology

Performance Efficiency. Differences among the seven technologies accounted for 16% of the

variation in Performance Efficiency scores. Post hoc tests revealed that the primary

differences occurred between C and C++, which had higher means and COBOL, which had

lower means. Means for other technologies were positioned between these two groups. As

we can see in Figure 15, COBOL displayed wide variation and contained both the highest and

lowest Performance Efficiency scores. Since C and C++ are designed to allow developers to

get close to the machine, it is not surprising that their scores are higher for Performance

Efficiency. The high COBOL scores at the upper end of its distribution likely result from many

years of tuning a transaction processing system for the speed of handling large volumes of

transactions.

© CAST. All rights reserved. Page 33 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Figure 15. Distribution of Performance Efficiency Scores by Technology

Changeability. Differences among the seven technologies accounted for 26% of the variation

in Changeability scores. Post hoc tests revealed that the primary difference occurred

between Java-EE, which had a higher mean and COBOL, .NET, Oracle Server, and C which had

lower means. The means for ABAP and C++ rested between these two clusters of high and

low means. As can be seen in Figure 16, COBOL and Oracle Server both displayed wide

variation in Changeability scores. However, for most of the technologies, interquartile ranges

for Changeability were smaller than they were for Robustness, Security, and Performance

Efficiency, indicating less variability among applications in the centers of the distributions.

© CAST. All rights reserved. Page 34 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Figure 16. Distribution of Changeability Scores by Technology

Transferability. Differences among the seven technologies accounted for only 7% of the

variation in Transferability scores. Post hoc tests revealed that the primary difference

occurred between Java-EE, .NET, ABAP, and COBOL, which had a higher means and Oracle

Server, which had the lowest mean. The means for C and C++ rested between these two

clusters of high and low means. As we can see in Figure 17, COBOL and Oracle Server both

displayed slightly wider variation. However, for most of the technologies, interquartile ranges

for Transferability were smaller than they were for the other Health Factors, with the

exception of Changeability, indicating less variability among applications in the centers of the

distributions.

© CAST. All rights reserved. Page 35 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Figure 17. Distribution of Transferability Scores by Technology

Summary. For Robustness, Performance Efficiency, and Changeability, strong differences

were observed between technologies. However, technology accounted for only a small

percentage of the variation among scores for Security and Transferability. Applications built

in COBOL and Oracle Server exhibited the lowest scores on most Health Factors. The lowest

distributions of scores for all technologies were observed for the maintainability/cost factors

of Changeability and Transferability.

Since technology accounted for a large portion of the variation in several Health Factors,

most analyses in future sections will be conducted within a single technology so that Health

Factor scores can be computed identically. The effect of technology is stronger than the

effect of industry segment, and differences in technologies used across industry segments

may explain some of the differences detected in Health Factor scores. When we compare

the results for Java-EE, the only technology with enough applications in each industry to

support analysis, in Table 12 to the similar results in Table 10, we see that the percentage of

variation in Health Factor scores rose slightly.

© CAST. All rights reserved. Page 36 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;
Table 12. Percentage of variance explained in Health Factors across industry

segments in Java-EE

4.3 Type of Application System

Differences among mean scores on each Health Factor for the six types of application

systems with at least 40 applications in the CRASH sample were compared in an ANOVA.

These types of systems included core transaction processing, enterprise resource planning

customer-facing websites, enterprise portals, customer resource management, and

analytics. Table 13 summarizes the mean scores for each type of system on each Health

Factor. Statistically significant differences for all Health Factors were observed, and were

significant above p < .002 for all factors except Transferability. However, as reported in Table

13, differences among types of applications never accounted for more than 6% of the

variation in scores, and for Security and Transferability it barely reached 1%. The following

paragraphs describe in greater depth the distribution of scores and which industry segments

were responsible for the significant differences.

Table 13. Means and variance explained in Health Factors by type of system

Robustness. Differences among the six types of application systems accounted for only 3%

of the variation in Robustness scores. Post hoc tests revealed that the primary differences

occurred between enterprise portals, which had the highest mean score (3.29) and core

transactions systems, which had the lowest mean (3.14). As we can see in Figure 18, core

© CAST. All rights reserved. Page 37 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;
transaction systems displayed the widest variation, containing both the highest and lowest

Robustness scores.

Figure 18. Distribution of Robustness scores by system type

Security. Differences among the six types of application systems accounted for only 1% of

the variation among Security scores. Post hoc tests revealed that the primary differences

occurred between ERP, customer-facing websites, and enterprise portals, which had means

between 3.26 and 3.29, and core transaction systems, CRM and analytics, which had mean

scores between 3.16 and 3.19. As we can see in Figure 19, core transaction systems displayed

the wide variation, containing both the highest and lowest Security scores. In fact, even

though core transaction systems had the largest percentage of scores below 3.0, they also

had the largest percentage of scores above 3.5.

© CAST. All rights reserved. Page 38 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Figure 19. Distribution of Security scores by system type

Performance Efficiency. Differences among the six types of application systems accounted

for only 6% of the variation in Performance Efficiency scores. Post hoc tests revealed that the

primary differences occurred between CRM, which had the highest (3.34) mean, and core

transaction systems, which had with the lowest mean (3.03). As we can see in Figure 20, core

transaction systems displayed the widest variation and contained both the highest and

lowest Performance Efficiency scores.

Figure 20. Distribution of Performance Efficiency scores by system type

© CAST. All rights reserved. Page 39 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Changeability. Differences among the six types of application systems accounted for only

4% of the variation in Changeability scores. Post hoc tests revealed that the primary

differences occurred between CRM (3.10) and enterprise portals (3.12), which had the

highest mean scores, and core transaction systems, which had the lowest mean (2.97). As

we can see in Figure 21, the variation in scores was not as wide as it had been for other

Health Factors.

Figure 21. Distribution of Changeability scores by system type

Transferability. Differences among the six types of application systems accounted for only

1% of the variation in Transferability scores. As is evident in Figure 22, post hoc tests revealed

that the primary difference was the low score for analytics (2.93) compared to mean scores

for other system types. As can be seen in Figure 20, the variation in scores was not as wide

as it had been for other Health Factors.

© CAST. All rights reserved. Page 40 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Figure 22. Distribution of Transferability scores by system type

System by technology comparisons. The technology used in developing the application

system may be more important than the type of system itself in determining its Health Factor

scores. In fact, there is a relation between the type of system and the technology used to

develop it. Most core transaction systems, especially in financial services and insurance, have

been developed in COBOL. ABAP is primarily used in ERP systems. Customer-facing websites

and enterprise portals are most often built in Java-EE.

To investigate these interactions, ANOVAs were conducted on a single type of system

developed in several technologies. As reported in Table 14, with a few exceptions (n.s. = not

statistically significant), core transaction systems and customer-facing websites built in Java-

EE were found to have significantly higher Health Factor mean scores that those developed

in COBOL. Similarly, with the exception of Security, enterprise resource planning systems

built in Java-EE posted higher mean scores than those developed in ABAP. The percentages

of variance explained in these comparisons were often 10% or greater and explain why the

variance explained by system type is low. In essence, differently developed technologies

create substantial variance in structural quality results within a system type. Therefore, when

benchmarking, it is critical to compare against similar technologies to gain useful insights.

© CAST. All rights reserved. Page 41 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Table 14. Means and variance explained in Health Factors by technologies within

system types (n.s. means not statistically significant)

4.4 Source

Differences among mean scores on each Health Factor for applications developed in-house

versus outsourced were compared in an ANOVA. The ANOVAs were conducted separately

within each technology, with at least 40 applications in each sourcing category. Table 15

summarizes the mean scores on each Health Factor within each technology. Eleven of the

15 comparisons across Java-EE, COBOL, and .NET were statistically insignificant. The four

analyses that achieved statistical significance, three of which were in Java-EE, accounted for

little of the variation in scores. Of those four, two involved differences in Transferability

scores. Even in COBOL and .NET, where differences in means appear meaningful, the size of

the variation among scores kept these differences from being significant. Thus, the choice

between in-house and outsourced development made little difference in the Health Factor

scores in the CRASH sample.

© CAST. All rights reserved. Page 42 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Table 15. Means and variance explained in Health Factors by source

4.5 Shore

Differences among mean scores for each Health Factor for applications developed offshore

were compared in an ANOVA. The ANOVAs were conducted separately within each

technology, with at least 40 applications in each shoring category. Table 16 summarizes the

mean scores for each Health Factor within each technology. All comparisons for Java-EE and

.NET were statistically insignificant. However, we observed statistically significant differences

for COBOL applications, with particularly large differences in Transferability. In fact, as we

can see in Figure 23, three-quarters of the onshore applications scored in the bottom quartile

of the offshore applications for Transferability

Because of their age, most COBOL applications were likely developed onshore, and some

were then sent offshore for maintenance and enhancement. As presented in Section 4.2,

COBOL applications usually post among the lowest Health Factor scores. A possible factor

affecting the decision to offshore COBOL applications, especially if they are core transaction

systems, is to reduce operational risk when their transferability to offshore groups is

hampered by hard-to-understand code. Whether work was done offshore or onshore made

little difference for applications developed in modern technologies. However, for COBOL

applications, the decision appears to involve structural quality implications, especially in

terms of transferability.

© CAST. All rights reserved. Page 43 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Table 16. Means and variance explained in Health Factors by shore

Figure 23. Distribution of Transferability scores by shore for COBOL

© CAST. All rights reserved. Page 44 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

4.6 Geographical Region

Differences among mean scores for each Health Factor for applications developed in

Continental Europe, the United Kingdom, the United States, and India were compared in an

ANOVA. The ANOVAs were conducted only for Java-EE applications since that was the only

technology for which there were at least 30 applications in each country. Table 17

summarizes the mean scores on each Health Factor in each country. The comparisons for

Robustness, Security, and Transferability were statistically significant. However, only the

comparison for Security accounted for more than 5% of the variation in scores.

Table 17. Means and variance explained for Health Factors in Java-EE by country

The distributions of Security scores in Java-EE applications are presented by region in Figure

23. Regional differences accounted for 5% of the variation in Security scores. Post hoc tests

revealed that Continental Europe had the highest Security scores, while the UK and US had

the lowest scores. The variation of Security scores from applications in the United States is

especially wide. Figure 24 does not include distributions for Robustness and Transferability

scores since they accounted for only 1% of the variation in scores.

The higher Health Factor scores achieved by applications developed and maintained in

Continental Europe were investigated for explanations, but unfortunately, within the data

available, no explanatory patterns were evident. One possibility is that Continental Europe

was CAST’s first market and companies in those countries have been working with Health

Factor feedback longer and have had more time to improve applications.

© CAST. All rights reserved. Page 45 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Figure 24. Distributions of Robustness, Security, and Transferability scores by region

4.7 Organizational Maturity

Differences among mean scores on each Health Factor for applications developed under

different levels of organizational maturity were compared in an ANOVA. Organizational

maturity was measured as reported appraisal results using the Capability Maturity Model

Integration (CMMI) framework. Java-EE was the only technology for which there were enough

appraisal results to conduct an analysis. Even so, there were 27 or fewer applications at each

maturity level, and there were so few from high maturity organizations that this analysis only

covers CMMI Levels 1-3. The analysis outcomes should be treated as suggestive of trends,

since the samples in each category fell below the desired level of 40 applications.

Table 18 summarizes the mean scores for each Health Factor at each CMMI Level for

applications developed in Java-EE. All comparisons were statistically significant and

accounted for between 12% and 28% of the variation in scores. The percentages of variation

accounted for could be somewhat enhanced by the smaller number of applications in this

analysis. Nevertheless, the Health Factor score distributions in Figure 24 present a consistent

picture of how organizational maturity affects structural quality.

© CAST. All rights reserved. Page 46 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Table 18. Means and variance explained in Health Factors by CMMI Level

Since the patterns are virtually identical across all Health Factors, all 5 graphs have been

combined into Figure 25. Post hoc analyses indicated that all significant differences resulted

from the lower scores for CMMI Level 1 compared to Levels 2 and 3. In fact, almost ¾ of the

Robustness scores for applications developed in CMMI Level 1 organizations fall into or

below the lowest quartile of Robustness scores for applications developed in CMMI Level 2

and 3 organizations. A similar pattern was observed for Security scores where ½ half of the

Security scores for applications developed in Level 1 organizations fall into or below the

lowest quartile for applications developed in Level 2 or 3 organizations.

Performance Efficiency and Transferability scores showed the same pattern, but not as

strongly as the Robustness and Security distributions. The distribution of scores for

Changeability was different from that of the four other Health Factors. Post hoc tests

revealed that the Changeability means for all three levels were significantly different from

each other. While the mean for Level 3 was higher than that of Level 1, the mean for Level 3

was lower than that of Level 2, even though the medians were close. It is not clear what

caused the spread in the lower tail of the Changeability distribution of Level 3 applications.

© CAST. All rights reserved. Page 47 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Figure 25. Distribution of Health Factor scores by maturity level

These results are not surprising since CMMI Level 1 environments are characterized by

uncontrolled commitments and baselines. Developers are frequently overworked on

unrealistic schedules. Consequently, they make lots of mistakes without having adequate

time to detect and correct them. The lower scores for applications developed in CMMI Level

1 organizations reflect these conditions.

When organizations achieve a CMMI Level 2 capability, those in charge of projects or

applications gain control of the commitment and baseline processes. Consequently, projects

can plan and protect the time required to perform disciplined development. As a result, the

structural quality of their work improves. Since CMMI Level 3 focuses on collecting best

practices by implementing Level 2 capabilities and integrating them into a standard

organizational process, the improvement made in achieving Level 3 status is one of

organizational efficiency in an economy of scale, rather than one of developer performance.

© CAST. All rights reserved. Page 48 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;
Consequently, the primary improvement in structural quality occurs as organizations move

from CMMI Level 1 to Level 2.

4.8 Development Method

Differences among mean scores on each Health Factor for applications developed using

different development methods were compared in an ANOVA. Java-EE was the only

technology for which there were enough reports of the method used to conduct analyses.

Although there were only 20 applications reporting that no method was used, this category

was retained to serve as a baseline.

Table 19 summarizes the mean scores for each Health Factor within each method. Four of

the five comparisons were statistically significant. Differences among methods had their

strongest effects on Robustness and Changeability, where they accounted for 10% and 14%

of the variation respectively. Although the pattern of mean Security scores was similar to the

other Health Factor means, as is evident in Figure 26, the larger variation in scores masked

differences among Security means.

Table 19. Means and variance explained in Health Factors by development method

Post hoc tests revealed that the significant results in these data were a result of the fact that

hybrid methods universally earned the highest scores and no method generally earned

lower scores. The Health Factor differences between Agile and Waterfall methods were

small, with both consistently earning lower scores than hybrid methods. The consistently

better structural quality results for hybrid methods likely result from their combination of up

front analysis and design of application architecture, as well as their rapid feedback on

defects during short, iterative sprints. This allows developers to address system and

© CAST. All rights reserved. Page 49 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;
architectural level quality issues early, and then detect more granular issues as code is

developed.

Figure 26. Distributions of Health Factor scores by development method

4.9 Team Size

Differences among mean scores for each Health Factor for applications developed by teams

of different sizes were compared in an ANOVA. Java-EE was the only technology for which

there were enough reports of team size to conduct analyses. Although there were only 29

applications reporting a team size of 6 to 10 developers, this category was retained for

continuity.

© CAST. All rights reserved. Page 50 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Table 20. Means and variance explained in Health Factors by team size

Table 20 summarizes the mean scores for each Health Factor for each team size. Four of the

five comparisons were statistically significant. Differences in team size had moderate effects

accounting for 5% to 8% of the variation respectively. Post hoc tests revealed that these

differences primarily involved lower means for teams of more than 20 developers, except

for Performance Efficiency, where teams of 11 to 20 developers posted the lowest mean

scores. As we can see in Figure 27, the variation in Health Factor scores for all categories of

team size tended to be larger for Security and Performance Efficiency.

© CAST. All rights reserved. Page 51 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Figure 27. Distributions of Health Factor scores by team size

4.10 Number of Users

Differences among mean scores for each Health Factor for applications serving different

numbers of users were compared in an ANOVA. Java-EE was the only technology for which

there were enough reports of user numbers to conduct analyses. Since applications in the

CRASH tended to be business-critical applications, most served over 5000 users, which

indicates that they were customer-facing in most cases. The two categories between 501 and

5000 users had 30 or fewer applications each, so the wide variation in sample sizes warrants

some caution in interpreting results.

Table 21 summarizes the mean scores for each Health Factor for different numbers of users.

Four of the five comparisons were statistically significant. Differences in number of users

were small, accounting for 3% to 5% of the variation respectively. Post hoc tests revealed

that these differences primarily involved higher means for applications with over 5000 users,

although in the case of Robustness and Performance Efficiency means for applications

serving 5001 to 1000 users were close to those serving over 5000. As we can see in Figure

28, the variation in Health Factor scores for all categories of users served tended to be larger

for Security and Performance Efficiency.

© CAST. All rights reserved. Page 52 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Table 21. Means and variance explained in Health Factors by number of users

Figure 28. Distributions of Health Factor scores by number of users

© CAST. All rights reserved. Page 53 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

5 Conclusions

5.1 Summary of Results

The findings from the 2017 Appmarq sample are believed to be generalizable to the larger

population of business-critical applications. The heaviest concentrations of applications

came from financial services, insurance, telecommunications, and manufacturing.

Applications in a broad range of technologies were analyzed, but they were most often-

developed in Java-EE, COBOL, .NET, and ABAP. The most frequent types of applications in the

2017 Appmarq sample were core transaction processing, enterprise resource planning,

customer-facing websites, and enterprise portals. Not surprisingly, there were associations

between the types of application systems and the technologies in which they were

developed.

Although not exactly comparable because of different numbers of rules defined for each

Health Factor, scores for those related to operational risk (Robustness, Security,

Performance Efficiency) were higher than those related to cost/maintainability

(Changeability, Transferability). Scores on Security varied widely, with some of the highest

and lowest scores recorded. Analysis at the level of individual violations of quality rules

indicated that greater compliance was observed for system-level, critical, and operational

risk related rules.

The size of the application in lines of code had negligible effects on Health Factor scores.

However, the relationships between operational risk and cost/maintainability Health Factors

seem to have increased because of programming styles affected by the smaller module sizes

used in modern development technologies.

Several factors were found to have significant influence on the structural quality of business

applications. Table 22 presents a summary of the effect sizes for each application, in terms

of percentage of variation, explained in Health Factor scores by the demographic category

into which the application fell. Differences in technology were found to have a sizeable effect

on Robustness, Performance Efficiency, and Changeability scores. Since different numbers

of quality rules were measured for different technologies, the remainder of the demographic

factors were evaluated separately within technologies that had enough applications in the

various categories of each demographic to support statistical analysis. Only Java-EE

contained enough applications in each category of each demographic factor to support

analysis of all the factors. To support better comparability, Table 22 only reports the percent

of variance in results for Java-EE applications.

© CAST. All rights reserved. Page 54 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Table 22. Effect size comparisons among demographics affecting Health Factors in

Java-EE

When compared across Java-EE applications, the demographic factors with the largest

impact on Health Factor scores were organizational maturity and development method.

Smaller effects were found for team size, industry segment, and number of users. The type

of application— whether it was developed in-house or outsourced, or whether it was

developed onshore or offshore—made little difference to Health Factor scores.

© CAST. All rights reserved. Page 55 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

5.2 Recommendations

The following recommendations emerge from the 2017 CRASH Report:

1. Benchmarking should be conducted within technology and type of application in order

to gain accurate insight into comparable performance. Results from benchmarking

purely against industry segment can be misleading because of effects by other factors

with greater influence that may vary across organizations.

2. Greater attention must be given to secure coding practices as many applications had

scores that were unacceptably low. Security scores displayed wider variation than those

of any other Health Factor.

3. To improve Health Factor scores, organizations must improve the maturity of their

development processes and practices. Low maturity organizations consistently posted

lower Health Factor scores.

4. Adopt hybrid methods for developing business critical applications. Hybrid methods

achieved higher Health Factor scores than both agile and waterfall methods by

integrating up front architectural analysis with rapid feedback on the quality.

5. Avoid creating teams of over 20 developers. Teams of less than 10 appear to be optimal.

6. When considering outsourcing or off shoring, pay attention to factors that are shown to

affect structural quality, such as organizational maturity, development method, or team

size, since these factors have greater influence than the source or shore of development.

7. Analyze source code on a regular basis prior to release to detect violations of quality rules

that put operations or costs at risk. System-level violations are the most critical since they

cost far more to fix and may take several release cycles to fully eliminate.

8. Treat structural quality improvement as an iterative process pursued over numerous

releases to achieve the optimal quality thresholds.

While adopting these evidence-based recommendations cannot guarantee high structural

quality, they have been shown empirically to be associated with higher quality applications.

© CAST. All rights reserved. Page 56 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

About CAST
CAST is the software intelligence category leader. CAST technology can see inside custom applications with MRI-like
precision, automatically generating intelligence about their inner workings - composition, architecture, transaction
flows, cloud readiness, structural flaws, legal and security risks. It’s becoming essential for faster modernization for
cloud, raising the speed and efficiency of Software Engineering, better open source risk control, and accurate
technical due diligence. CAST operates globally with offices in North America, Europe, India, China.
Visit castsoftware.com.

CAST Research Labs
CAST Research Labs (CRL) furthers the empirical study of software implementation in business technology.
We provide practical advice and periodic benchmarks to the global application development community, as
well as interacting with the academic community. Through scientific analysis of large software applications, we
focus on providing insights that can improve application structural quality at the architectural and code unit
levels. We also provide guidance on managing technical debt and improving developer, project, and
organizational productivity.

Since 2007 CRL has been collecting metrics and demographic characteristics from custom applications deployed by
large, IT-intensive enterprises across North America, Europe and India. This unique dataset is stored in the
CAST Appmarq benchmarking repository.

The CAST Application Intelligence Platform
CAST Application Intelligence Platform (AIP) is an enterprise-grade software quality analysis and measurement
solution designed to analyze multi-tiered, multi-technology applications for technical vulnerabilities and
adherence to architectural and coding standards. The intelligence generated by CAST AIP provides:

 An analysis of technical debt to guide application development teams in improving these complex
systems

 Insight into risks associated with upgrading software packages, coupled with automated and detailed
technical documentation of these complex, legacy systems

 The real-time information needed to improve application health and development team performance

http://www.castsoftware.com/
http://www.castsoftware.com/research-labs/overview
http://www.castsoftware.com/products/application-intelligence-platform
https://www.castsoftware.com/

© CAST. All rights reserved. Page 57 of 57

CRASH Report | Global 2017

Prellljsdf;lkajsf;laksjdf;

Contact

United States Europe

321 W. 44th St., Suite 501

New-York, NY 10036

USA

+1 212 871 8330

3, rue Marcel Allégot

92190 Meudon

France

+33 1 46 90 21 00

castsoftware.com

http://www.castsoftware.com/

