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This is the fourth report produced by CAST on global trends in the structural quality of 

business application software. The data are drawn from CAST’s Appmarq Repository which 

contains structural quality analyses of large, multi-layer, multi-language business 

applications. These reports highlight trends in five structural quality characteristics, or health 

factors: Robustness, Security, Performance Efficiency, Transferability and Changeability. The 

report identifies factors that affect the structural quality of applications.
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Executive Summary 

This is the fourth in a series of reports produced by CAST providing benchmarks on the 

structural quality of IT applications developed across the globe. This benchmark was 

developed from 1850 applications consisting of 1.03 BLOC (billions of lines of code), 

distributed across 329 organizations and 8 countries. 

From a technology standpoint, this sample is predominantly made of Java-EE (40%), COBOL 

(22%), and .NET (10%), along with numerous other technologies such as ABAP, JSP, Oracle 

Server, PHP, etc. The sizes of these applications are spread widely, with more than 228 

consisting of over a MLOC (million lines of code). The size of an application had negligible-to-

no relation to its structural quality. 

This report describes the effects of different development factors on structural quality. 

Structural quality differed across technologies with COBOL and Oracle Server generally 

having the lowest scores and JEE generally having the highest scores. Applications in CMMI 

Level 1 organizations had lower scores than those in Level 2 or 3 organizations. Factors 

associated with higher scores included use of hybrid development methods (combining up 

front design with rapid feedback from iterations), teams with 10 or fewer members, and 

greater than 5,000 end users. 
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About CAST’s Appmarq Repository

Appmarq (www.appmarq.com) is CAST’s application quality benchmarking repository. Over 

the past decade, CAST has analyzed the structural quality of thousands of business 

applications across different industries. These industries span telecommunications, 

insurance, financial services, national and local governments, retail, manufacturing, and 

many other IT-intensive sectors. The data have been collected and anonymized from 

organizations primarily across Europe, North America, and India. 

The data in Appmarq provide unique insight into the structural quality trends of business 

application software. With Appmarq benchmarking services, companies can benchmark the 

structural quality of their applications against that of their peers in the same industry, or 

against applications developed with similar technologies, to identify strengths, weaknesses, 

and areas for improvement based on their structural quality characteristics. 

The Appmarq Repository contains structural quality data on 2,200 applications from 400 

organizations, totaling over 2 billion lines of code. The structural quality analyses were 

performed against over 1,200 rules of good architectural and coding practice in the areas of 

Robustness, Security, Performance Efficiency, Changeability, and Transferability. 

2,200 
applications 

400+ 
organizations 

2B+ 
lines of code 

1,200+ 
quality rules 

http://www.appmarq.com/
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1 Introduction to CRASH Reports 

This is the third CRASH report produced by CAST Research Labs on global trends in the 

structural quality of business application software. The data were drawn from CAST’s 

Appmarq Repository which houses data collected during system-level structural analyses of 

large business applications. Structural quality refers to the engineering soundness of the 

architecture and coding of an application, rather than to the correctness with which it 

implements the customer’s functional requirements. Structural quality is occasionally 

referred to as non-functional, technical, or internal quality. 

1.1 Health Factors 

Structural quality is measured by detecting violations of rules representing good 

architectural and coding practice in each of five areas called health factors defined in Table 1. 

Scores for health factors are computed on a scale of 1 (low/poor) to 4 (high/good) by 

analyzing the application to detect violations of over 1200 rules of good architectural and 

coding practice distributed across these five health factors as shown in Table 1. 

Health Factor Definition Quality Rules 

Robustness 
Robustness measures the likelihood of outages, the 

difficulty of recovery and the possibility of data 

corruption linked to poor coding practices. 

546 

Security 
Security measures violations of secure coding practices 

that allow unauthorized entry, deceptive interactions, 

theft of data, or breach of confidentiality. 

333 

Performance 

Efficiency 

Efficiency measures the likelihood of potential 

performance degradation and inefficient use of 

resources such as processors, memory and networks 

linked to poor coding practices. 

244 

Changeability 
Changeability measures the difficulty of modifying 

applications, adding features, correcting errors, or 

changing the application’s environment. 

603 

Transferability 
Transferability measures the difficulty of transferring 

work, or the difficulty of understanding the application 

and becoming productive in working with it. 

601 

Table 1. Health Factor definitions and number of rules 

https://www.appmarq.com/public/index.php?healthfactor=robustness
https://www.appmarq.com/public/index.php?healthfactor=security
https://www.appmarq.com/public/index.php?healthfactor=efficiency
https://www.appmarq.com/public/index.php?healthfactor=changeability
https://www.appmarq.com/public/index.php?healthfactor=transferability
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Evaluating an application for violations of structural quality rules is critical since they are 

difficult to detect through standard testing. Structural quality flaws are the defects most 

likely to cause operational problems such as outages, performance degradation, 

unauthorized access, or data corruption. CRASH reports provide an objective, empirical 

foundation for discussing the structural quality of software applications throughout industry 

and government. 

1.2 Scoring the Health Factors 

Scoring begins by creating a compliance ratio for each quality rule that compares the number 

of times the rule was violated to the number of opportunities in the source code where the 

rule could have been violated. This approach is similar but not identical to six sigma scoring 

schemes in that it identifies all structural elements within an application where various 

quality rules apply. In computing a score for each health factor, each quality rule contributes 

a specific weight based on its compliance ratio, its severity, and its impact on the specific 

health factor. Quality rules are divided between two levels of analysis:  

 Code-level rules: These are rules evaluated at the code-unit level inside a class,

method, sub-routine, module, or other foundational code unit. Violations at this level

typically involve coding hygiene issues and simple defects.

 System-level rules: Architectural rules whose evaluation involves multiple

components often spread across several layers of the application. These violations

are difficult or impossible to detect through ordinary testing. They are typically the

culprits that cause outages, security breaches, data corruption, and difficulty in

sustaining or scaling the application.

Quality scores are first computed at the code-unit level and then aggregated to the 

application level. The health factor scoring scheme was designed to accentuate operational 

risk and cost. Thus, a single violation with the highest severity rating can have as much impact 

on lowering a Health Factor score as a collection of lower severity violations. 
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2 The CRASH Sample 

The CRASH data drawn from the Appmarq Repository include 1,850 applications submitted 

by 329 organizations for analysis. In the aggregate, these applications totaled 1.03 BLOC 

(billion lines of code). The submitting organizations are located primarily in Continental 

Europe (France, Belgium, Italy, Germany, and Spain), the United Kingdom, North America 

(the United States and Canada) and India. The sample includes applications written primarily 

in COBOL, Java-EE, .Net, Oracle Server, and other technologies such as PHP, C/C++, 

PowerBuilder, C#, and Visual Basic. 

2.1 Application Size 

The lower threshold for accepting applications into this CRASH sample was 10 KLOC (kilo or 

thousand lines of code). Figure 1 divides the sample into size categories wherein 26% of the 

applications contain between 10 KLOC and 50 KLOC, 32% contain between 50 KLOC and 200 

KLOC, 30% contain between 200 KLOC and 1 MLOC, and 12% contain more than 1 MLOC, 

including 28 applications over 5 MLOC and 7 over 10 MLOC. 

Figure 1. Distribution of application sizes for the full sample 
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Distributional statistics for the full CRASH sample are presented in Table 2. The mean of 

554,783 LOC is almost 4 times larger than the median size of 146,359 LOC, indicating the 

sample is extremely positively skewed by the applications over 5 MLOC, the largest of which 

contained 52,773,950 lines of code. The extreme positive skewness of this sample is further 

revealed by the standard deviation being three times larger than the mean score and almost 

13 times larger than the median score. In addition, the mean size is above the third quartile, 

indicating the heavy effect of a few extremely large programs. The 52 MLOC application was 

written in RPG and will not appear in many of the analyses in this report since they focus on 

factors affecting the most frequently used technologies. 

Table 2. Distributional statistics for lines of code for the full CRASH sample 

The sample is widely distributed across size categories and appears representative of the 

various types of applications in business use. However, the applications submitted for 

structural analysis and measurement tend to be business-critical systems, so we do not claim 

that this sample is statistically representative of the population of business applications 

globally. Rather, this sample appears most1representative of the mission-critical subset of 

business applications. Not surprisingly, a sample weighted toward business-critical 

applications would contain some of the largest applications in an organization’s portfolio. 

2.2 Technology 

As presented in Figure 2, COBOL and Java-EE (JEE) are the most frequently used technologies 

in the CRASH sample, with 40% and 22% of applications having been developed in these 

technologies respectively. The large sample of COBOL applications results from the large 

proportion of applications from the financial services and insurance industries. Other 

technologies involved in more than 40 applications in the CRASH sample included .NET, 

ABAP, Oracle Server, C, and C++. Thirteen percent of the sample was distributed across a 

range of technologies, of which C# and JSP alone account for over 30 applications each. 
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Figure 2. Distribution of applications across technologies in the CRASH sample 

As evident in Figure 3, there are differences in how the technologies are distributed across 

size categories. Data are presented for the four technologies with the largest number of 

applications—Java-EE, COBOL, .NET, and ABAP. For applications with no more than 20,000 

LOC, the highest percentages are in Java-EE and .Net. For applications with more than 1 

MLOC, COBOL and ABAP have the highest percentages. In fact, the percentage of ABAP 

applications tends to increase with their size, to a high of 24% for applications with over 1 

MLOC. Most Java-EE applications fall into the range of 20 KLOC to 500 KLOC. The percentage 

of .NET applications increases up to 500,000 and declines thereafter. 
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Figure 3. Distributions across size categories for Java-EE, COBOL, .NET, and ABAP 

Descriptive statistics for these applications are presented in Table 2. The mean size of 

applications in the full sample is 554,782 lines of code. However, since the median size is 

146,359, the sample is positively skewed by the extreme sizes of several very large 

applications. The largest average sizes are in COBOL and ABAP applications, while the 

smallest average sizes are in Oracle Server, .NET, and Java-EE. The two extreme outliers in 

the sample are written in RGP300 and consist of approximately 33 and 52 MLOC. 

2.3 Industry Segment 

The 2016 CRASH sample includes applications from 329 companies in 12 industry segments. 

These applications are displayed in Figure 4 by the number of applications and the number 

of contributing organizations in each segment. One third of the sample comes from financial 

services, 13% comes from insurance, and 12% from telecommunications. All other industry 

segments account for less than 10% of the sample. Applications that could not be classified 

by industry or were in segments with fewer than 10 applications are included in the category 

labelled ‘Other’. 

The distribution of languages across applications within each industry segment is presented 

in Table 3. Use of Java-EE, the most common technology in the CRASH sample, is widely 

distributed across all industry segments. Conversely, COBOL, the second most common 
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technology in the CRASH sample is primarily used in financial services and insurance.  .NET 

and Oracle Server were used in all industry segments. ABAP was primarily used in 

manufacturing and utilities. Having been developed in Bell Labs, it is not surprising that the 

highest use of C and C++ was in telecom and the next highest use of C was in utilities. 

Figure 4. Frequency of applications and organizations in each industry segment 
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Table 3. Frequency of applications by technology within industry segments 

2.4 Type of Application System 

The type of system was listed for 1,388 applications. Table 4 provides the total frequencies 

of system types and how these types are distributed by technology. Frequencies are not 

displayed for technologies with too few applications, so the technology columns will not sum 

to the frequency for the total sample. The most frequent system types in the CRASH sample 

were Core Transaction Systems and Enterprise Resource Planning systems. Core Transaction 

Systems were most frequently written in COBOL, and to a lesser extent Java-EE. Enterprise 

Resource Planning systems were often written in Java-EE, and of course ABAP. Customer-

facing websites were most frequently written in Java-EE, but surprisingly 18% were written in 

COBOL. Enterprise Portals, Customer Resource Management, and Analytics systems were 

primarily written in Java-EE. 
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Table 4. Frequency of application type by technology 

Table 5 presents the frequencies of each system type within each industry segment. 

Applications with no listed industry segment are not included, so columns will not sum to 

the total frequency for each system type. Core transaction systems are concentrated most 

heavily in the financial services and insurance industries. ERP systems are widely spread 

across all industry segments, but are most heavily concentrated in manufacturing, telecom, 

and utilities. Customer-facing websites are most heavily concentrated in financial services 

insurance and telecom, while internal portals are most frequent in financial services, 

telecom, and manufacturing. Analytics systems were most frequent in financial services and 

telecom. 
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Table 5. Frequency of application type by industry segment 

Table 4 demonstrated there is a strong relationship between system type and the technology 

used to develop it. Table 5 shows a relationship between industry segment and system types. 

These observations suggest that differences between industries in structural quality may be 

more attributable to the mix of application types than to the qualities of the industry.  
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3 Structural Quality 

3.1 Global Trends 

Comparisons of scores across Heath Factors is inexact because different numbers of rules 

were defined for each. Since the scoring system partially mitigates these differences, we can 

be gain some insight into the general structural quality trends. The mean scores for the five 

Health Factors are displayed for the full CRASH sample in Table 6. Means for the operational 

risk factors of Robustness, Security, and Performance Efficiency were higher than those for 

the cost/maintainability issues of Changeability and Transferability. 

Table 6. Mean Health Factor scores for the global sample 

Box and whisker charts comparing the distributions of technology scores on the five Health 

Factors are presented in Figure 5 along with an explanation of how to these charts should 

be interpreted in this report. While the pattern of means is evident, the most striking 

observation from this chart is the large variance in scores. While the interquartile ranges 

varied from 0.4 to 0.6 in width, the 2 sigma limits above and below each mean are quite 

large. Even more dramatic, the range of scores for each Health Factor is extended by outliers. 

Although the means for Security and Performance Efficiency were high, the variance in their 

scores was quite large, as evidenced by their larger interquartile range (the barrel from the 

1st to 3rd quartile that contains 50% of the data points for that category). While some 

applications achieved the highest scores attainable on Security and Performance Efficiency, 

several applications achieved scores that were low on these Health Factor scales.  
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Figure 5. Distribution of Health Factor scores in the total sample 

3.2 Relationships among Health Factors 

Table 7 presents the strength of relationships among pairs of Health Factors. For easier 

comparison, correlation coefficients were squared into the percentages of common 

variation in scores shared by each pair. Since the pattern of relationships differs between 

technologies, results are presented for COBOL and Java-EE. 

In COBOL, there are two clusters of Health Factors that were confirmed in a factor analysis. 

The first cluster includes the operational risk factors of Robustness, Security, and 

Performance Efficiency, where the relationships accounted for between 41% and 76% of the 

variation in scores. The second factor includes the cost/maintainability factors of 

Changeability and Transferability, which shared 49% of the variation in their scores. The 

relationships between the Health Factors in these two clusters never accounted for more 

than 6% of the shared variation, except for the moderate relationships of Robustness with 

the Changeability and Transferability. 

The pattern of relationships is quite different in Java-EE and .NET. With the exception of 

Security, moderate-to-strong relationships existed between all of the Health Factors where 

the shared variation ranged from 29% to 58% in Java-EE and from 25% to 40% in .NET. 

Security, which had smaller relationships with Performance Efficiency and Transferability in 

Java-EE and with Changeability and Transferability in .NET. 
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Table 7. Percentages of variation accounted for between Health Factors 

The difference in these patterns of relationships may result from fundamental changes in 

programming style from older technologies such as COBOL to more modern technologies 

such as Java-EE. In COBOL, modules tend to be quite large—often 10 times larger than those 

in Java-EE and other more modern languages. Further, since they are quite often used in 

transaction processing systems on mainframes, they have been optimized for reliability, 
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speed, and security. Such use often comes at the expense of ease of change and 

understanding. Modern technologies such as Java-EE have been constructed to support 

object-oriented programming where components such as classes and methods are much 

smaller than COBOL modules. When properly engineered, smaller components are easier to 

understand and change, and thus the relationships between operational risk factors and 

cost/maintainability factors are stronger, as seen in Table 7. 

3.3 Relations of Health Factors to Size 

Correlations between the size of applications and their Health Factor scores are presented 

in Table 8 for the total CRASH sample and separately for each technology with at least 40 

applications. Although some of the correlations are significant because of the large sample 

size, they are uniformly low. Only five of the correlations indicated that size accounted for as 

much 4% of the variation in Health Factor scores, and none accounted for more than 6%. 

Table 8. Correlations of Size with Health Factors in the total sample and by technology 

To help visualize these relationships, Figure 6 presents the scatterplot for the largest 

correlation in Table 7, which is -0.24 and which indicates a small negative relationship 

between lines of code and Transferability. Visually the variation appears random around the 

mean and even the effect of the application being large, with over 2.7 MLOC does not change 

the small negative relationship. Scatterplots for the other correlations appear similar to 

Figure 7, indicating that size has a very weak relation with the structural quality of 

applications. This observation was replicated across technologies. 
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Figure 6. Scatterplot of the relationship between size and Transferability in .NET 

3.4 Violation-Level Observations 

Violation-level data were available from a maximum of 1,353 applications. As presented in 

Table 9, just over 97 million violations of quality rules were detected in these applications. 

However, there were over 1.3 billion opportunities in the source code where the rules could 

have been violated. Thus, source code structures were found to be in non-compliance with 

relevant quality rules in only 7.4% of the instances in which they applied. 
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Table 9. Non-compliance and process sigma levels for quality rule violations 

System-level rules were violated in only 6.07% (1,172,064 violations) of the more than 19 

million total opportunities where system level rules applied in these applications. Recent 

research found that system-level violations often account for approximately 10% of total 

violations. However, these system-level violations can account for over 50% of corrective 

maintenance costs.2 

Of the 97 million violations of quality rules, only 1.6% are rated as critical. However, the 

quality rules underlying these critical violations exhibited a much higher compliance rate 

(99%) than the quality rules for non-critical violations (92%). Among the Health Factors, 

compliance was higher for the operational risk factors of Robustness, Security, and 

Performance Efficiency than it was for the compliance ratios for the cost factors of 

changeability and transferability. In general, compliance with quality rules was greatest 

2 Li, et al. (2011). Characteristics of multiple component defects and architectural hotspots: A large 

system case study. Empirical Software Engineering, 16 (5), 667‐702 
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where the risk was highest (i.e. with system-level violations, critical violations, and violations 

related to business risk Health Factors). 

Table 7 also reports process sigma levels computed as defects per million opportunities. The 

process sigma level is computed as a standard score representing the number of standard 

deviations out on a distribution of defects per million opportunities. The popular six sigma 

notation indicates that at 6 standard deviations out, there are only 4 defects per million 

opportunities. In these data, the highest scores are between 3 and 4 sigma. In most cases, 

software technology and practice are not sufficiently advanced to achieve six sigma levels. 

Based on these data, most IT organizations should strive to achieve scores between 3.5 and 

4 sigma for business- or mission-critical applications. 

3.5 Case Study: Code unit vs system-level violations 

In Table 9, system-level violations account for only 6.07% of the total violations analyzed in 

this CRASH Report.  However, industrial experience and research have demonstrated that 

they have a disproportionate effect on operational risks and corrective maintenance costs.  

The distinction between system and code unit-level violations is important since most static 

analysis technologies only detect code unit-level violations.  Code unit-level violations most 

often involve the Changeability and Transferability weaknesses that affect ease of 

maintenance and not operational risks such as Robustness and Security.   

This system vs. code unit-level distinction is highlighted in a case study from one of the 

organizations contributing applications to Appmarq.  A large consumer brand with 

thousands of developers, multiple ADM vendors, and hundreds of large applications 

embarked on a program to manage code quality. They focused first on code quality at the 

code unit level. After running the unit-level quality program for two years, they initiated 

system-level analysis. When they measured the quality of their business-critical applications, 

they found that, as shown in Figure 7, their earlier remediation efforts had primarily achieved 

more maintainable software.  Health Factor scores for operational risk factors of Robustness, 

Security, and Performance Efficiency were significantly lower.  In fact, all Health Factor scores 

were significantly lower than those reported for the full Appmarq sample in Table 6.  In 

particular, the scores for the operational risk factors of Robustness, Security, and 

Performance Efficiency were far lower than those of the global sample. 
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Figure 7.  Case study Health Factor scores 

These results were not surprising because system-level issues are more often related to 

Robustness, Security, and Performance Efficiency.  Code unit-level quality analyses most 

often detect hygiene issues that affect maintainability, but cannot detect the flawed 

interactions among components across the system that affect reliability, security, and 

performance.  Although system-level violations account for a small percent of the total 

violations detected, their detection is critical to creating a full account of the flaws that 

potentially affect reliability, security, and performance during operations. 
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4 Factors Affecting Structural Quality 

This section presents analyses of various factors that can influence structural quality. As will 

be demonstrated in Section 4.1, there are significant differences among the technologies 

used in developing applications in the CRASH sample. Since different numbers of quality 

rules were defined for each technology, comparisons among Health Factor scores across 

technologies are not exact. A few comparative observations will be made among 

technologies, but in later sections the analyses will be conducted within single technology 

categories. Consequently, analyses of factors that influence structural quality will only be 

conducted within technologies when there are at least 20 applications in each category of 

the factor under analysis. 

4.1 Industry Segment 

Differences among mean scores on each Health Factor for the ten industry segments with at 

least 40 applications in the CRASH sample were compared in an analysis of variance 

(ANOVA). Statistically significant differences (p < .001) in means were observed between 

industry segments for all five Health Factors. However, as reported in Table 10, differences 

among industry segments never accounted for more than 4% of the variation in scores. Table 

10 summarizes the mean scores for each of the industry segments on each Health Factor. 

The following paragraphs describe in greater depth the distribution of scores and which 

industry segments were responsible for the significant differences. 
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Table 10. Means and variance explained in Health Factors by industry segment 

Robustness. Differences among the ten industry segments accounted for only 4% of the 

variation in Robustness scores. Post hoc tests revealed the primary differences occurred 

between government, which earned the highest mean score and financial services, which 

earned the lowest mean score. However, as we can see in Figure 8, financial services 

displayed wide variation, containing both the highest and lowest Robustness scores. In fact, 

the median for financial services was closer to that of other industries, indicating that the 

greater proportion of scores at the lower end of the financial services distribution is primarily 

responsible for the Robustness mean being lower than that of other industries. 
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Figure 8. Distribution of Robustness Scores by Industry Segment 

Security. Differences among the ten industry segments accounted for only 3% of the 

variation in Security scores. Post hoc tests revealed the primary differences occurred 

between government with the highest mean score with the lowest variance, while financial 

services, telecommunications, and retail posted the lowest mean scores. However, as we can 

see in Figure 9, there were wide variations in Security scores in many industries—especially 

in financial services, which contained both the highest and lowest Security scores. 
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Figure 9. Distribution of Security Scores by Industry Segment 

Performance Efficiency. Differences among the ten industry segments accounted for only 

4% of the variation in Performance Efficiency scores. Post hoc tests revealed that the primary 

differences occurred between government and IT consulting, which had the highest mean 

scores, and financial services, manufacturing, energy, and insurance, which had the lowest 

mean scores. However, as can be seen in Figure 10, there were wide variations in Security 

scores in many industries with the largest being observed in financial services. Several 

industries earned very high scores, while utilities earned the lowest. 
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Figure 10. Distribution of Performance Efficiency Scores by Industry Segment 

Changeability. Differences among the ten industry segments accounted for only 4% of the 

variation in Changeability scores. Post hoc tests revealed that the primary differences 

occurred between government, which had the highest mean score (3.25) and the other 

industries, which had means clustered between 2.97 and 3.08. As is evident in Figure 11, 

variance was moderate among Changeability scores. 

Figure 11. Distribution of Changeability Scores by Industry Segment 
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Transferability. Differences among the ten industry segments accounted for only 2% of the 

variation in Transferability scores. Post hoc tests revealed that the primary differences 

occurred between government, which had the highest mean score (3.25) and financial 

service and utilities, which had mean scores below 3.0. Figure 12 reveals very similar patterns 

for all industry segments on Transferability. 

Figure 12. Distribution of Transferability Scores by Industry Segment. 

Summary. With the exception of government applications, knowing the industry in which an 

application was developed provided little information about its Health Factor scores. 

Financial services tended to have lower scores across all of the Health Factors, but this was 

probably because of its greater proportion of COBOL-based core transaction systems, which 

was evident in Tables 3, 4, and 5 in Section 2. However, financial services showed wider 

variation than other industries in its scores for the operational risk factors of Robustness, 

Security, and Performance Efficiency. In each of these cases, it contained both the highest 

and lowest scores. 

The primary factors affecting structural quality are beyond the industry segment since it 

explains little of the variation in Health Factor scores. The next sections will explore other 

factors that may be more influential in affecting structural quality. 
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4.2 Technology 

Differences among mean scores on each Health Factor for the seven technologies with at 

least 40 applications in the CRASH sample were compared in an ANOVA. Among the analyses 

presented in this section, the analysis of technologies is the least exact since different 

numbers of rules were evaluated for different technologies. Even so, the scoring algorithm 

used in computing the Health Factor scores provided some correction for differences in the 

number of rules.  

Even with the caveat about rule differences among technologies, we can still draw some 

interesting observations. Large and statistically significant differences (p < .001) in means 

were observed between technologies fora all five Health Factors. Table 11 summarizes the 

mean scores for each of the technologies on each Health Factor. The following paragraphs 

will describe in greater depth the distribution of scores, which technologies were responsible 

for the significant differences, and why the percentage of variation accounted for by 

technology was smaller in Security and Transferability. 

Table 11. Means and variance explained in Health Factors by technology 

Robustness. Differences among the seven technologies accounted for 20% of the variation 

in Robustness scores. Post hoc tests revealed that the primary differences occurred between 

Java-EE, .NET, and C++, which had higher means and COBOL, Oracle Server, and C, which had 

lower means. The mean for ABAP rested between these two clusters of high and low means. 
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As we can see in Figure 13, COBOL and Oracle Server both displayed wide variation, with 

COBOL earning both the highest and lowest Robustness scores. 

Figure 13. Distribution of Robustness Scores by Technology 

Security. Differences among the seven technologies accounted for only 3% of the variation 

among Security scores. Post hoc tests revealed that the primary differences occurred 

between C++, ABAP, and C, which had higher means and COBOL and Oracle Server, which 

had lower means. The means for Java-EE and .NET rested between these two clusters of high 

and low means. As we can see in Figure 14, COBOL and Oracle Server both displayed wide 

variation, with COBOL containing both the highest and lowest Security scores. In fact, even 

though COBOL had the largest percentage of scores below 3.0, it also had the largest 

percentage of scores above 3.5. Although COBOL applications are often among the most 

secure, some receive extremely low Security scores, which reduces the overall mean. These 

large variations among scores within several technologies are the reason that only 3% of the 

variation in Security scores was explained by differences in technologies. 
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Figure 14. Distribution of Security Scores by Technology 

Performance Efficiency. Differences among the seven technologies accounted for 16% of the 

variation in Performance Efficiency scores. Post hoc tests revealed that the primary 

differences occurred between C and C++, which had higher means and COBOL, which had 

lower means. Means for other technologies were positioned between these two groups. As 

we can see in Figure 15, COBOL displayed wide variation and contained both the highest and 

lowest Performance Efficiency scores. Since C and C++ are designed to allow developers to 

get close to the machine, it is not surprising that their scores are higher for Performance 

Efficiency. The high COBOL scores at the upper end of its distribution likely result from many 

years of tuning a transaction processing system for the speed of handling large volumes of 

transactions. 
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Figure 15. Distribution of Performance Efficiency Scores by Technology 

Changeability. Differences among the seven technologies accounted for 26% of the variation 

in Changeability scores. Post hoc tests revealed that the primary difference occurred 

between Java-EE, which had a higher mean and COBOL, .NET, Oracle Server, and C which had 

lower means. The means for ABAP and C++ rested between these two clusters of high and 

low means. As can be seen in Figure 16, COBOL and Oracle Server both displayed wide 

variation in Changeability scores. However, for most of the technologies, interquartile ranges 

for Changeability were smaller than they were for Robustness, Security, and Performance 

Efficiency, indicating less variability among applications in the centers of the distributions. 
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Figure 16. Distribution of Changeability Scores by Technology 

Transferability. Differences among the seven technologies accounted for only 7% of the 

variation in Transferability scores. Post hoc tests revealed that the primary difference 

occurred between Java-EE, .NET, ABAP, and COBOL, which had a higher means and Oracle 

Server, which had the lowest mean. The means for C and C++ rested between these two 

clusters of high and low means. As we can see in Figure 17, COBOL and Oracle Server both 

displayed slightly wider variation. However, for most of the technologies, interquartile ranges 

for Transferability were smaller than they were for the other Health Factors, with the 

exception of Changeability, indicating less variability among applications in the centers of the 

distributions. 
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Figure 17. Distribution of Transferability Scores by Technology 

Summary. For Robustness, Performance Efficiency, and Changeability, strong differences 

were observed between technologies. However, technology accounted for only a small 

percentage of the variation among scores for Security and Transferability. Applications built 

in COBOL and Oracle Server exhibited the lowest scores on most Health Factors. The lowest 

distributions of scores for all technologies were observed for the maintainability/cost factors 

of Changeability and Transferability. 

Since technology accounted for a large portion of the variation in several Health Factors, 

most analyses in future sections will be conducted within a single technology so that Health 

Factor scores can be computed identically. The effect of technology is stronger than the 

effect of industry segment, and differences in technologies used across industry segments 

may explain some of the differences detected in Health Factor scores. When we compare 

the results for Java-EE, the only technology with enough applications in each industry to 

support analysis, in Table 12 to the similar results in Table 10, we see that the percentage of 

variation in Health Factor scores rose slightly. 
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Table 12. Percentage of variance explained in Health Factors across industry 

segments in Java-EE 

4.3 Type of Application System 

Differences among mean scores on each Health Factor for the six types of application 

systems with at least 40 applications in the CRASH sample were compared in an ANOVA. 

These types of systems included core transaction processing, enterprise resource planning 

customer-facing websites, enterprise portals, customer resource management, and 

analytics. Table 13 summarizes the mean scores for each type of system on each Health 

Factor. Statistically significant differences for all Health Factors were observed, and were 

significant above p < .002 for all factors except Transferability. However, as reported in Table 

13, differences among types of applications never accounted for more than 6% of the 

variation in scores, and for Security and Transferability it barely reached 1%. The following 

paragraphs describe in greater depth the distribution of scores and which industry segments 

were responsible for the significant differences. 

Table 13. Means and variance explained in Health Factors by type of system 

Robustness. Differences among the six types of application systems accounted for only 3% 

of the variation in Robustness scores. Post hoc tests revealed that the primary differences 

occurred between enterprise portals, which had the highest mean score (3.29) and core 

transactions systems, which had the lowest mean (3.14). As we can see in Figure 18, core 
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transaction systems displayed the widest variation, containing both the highest and lowest 

Robustness scores. 

Figure 18. Distribution of Robustness scores by system type 

Security. Differences among the six types of application systems accounted for only 1% of 

the variation among Security scores. Post hoc tests revealed that the primary differences 

occurred between ERP, customer-facing websites, and enterprise portals, which had means 

between 3.26 and 3.29, and core transaction systems, CRM and analytics, which had mean 

scores between 3.16 and 3.19. As we can see in Figure 19, core transaction systems displayed 

the wide variation, containing both the highest and lowest Security scores. In fact, even 

though core transaction systems had the largest percentage of scores below 3.0, they also 

had the largest percentage of scores above 3.5. 
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Figure 19. Distribution of Security scores by system type 

Performance Efficiency. Differences among the six types of application systems accounted 

for only 6% of the variation in Performance Efficiency scores. Post hoc tests revealed that the 

primary differences occurred between CRM, which had the highest (3.34) mean, and core 

transaction systems, which had with the lowest mean (3.03). As we can see in Figure 20, core 

transaction systems displayed the widest variation and contained both the highest and 

lowest Performance Efficiency scores. 

Figure 20. Distribution of Performance Efficiency scores by system type 



© CAST. All rights reserved. Page 39 of 57 

CRASH Report | Global 2017    

Prellljsdf;lkajsf;laksjdf;

Changeability. Differences among the six types of application systems accounted for only 

4% of the variation in Changeability scores. Post hoc tests revealed that the primary 

differences occurred between CRM (3.10) and enterprise portals (3.12), which had the 

highest mean scores, and core transaction systems, which had the lowest mean (2.97). As 

we can see in Figure 21, the variation in scores was not as wide as it had been for other 

Health Factors. 

Figure 21. Distribution of Changeability scores by system type 

Transferability. Differences among the six types of application systems accounted for only 

1% of the variation in Transferability scores. As is evident in Figure 22, post hoc tests revealed 

that the primary difference was the low score for analytics (2.93) compared to mean scores 

for other system types. As can be seen in Figure 20, the variation in scores was not as wide 

as it had been for other Health Factors. 
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Figure 22. Distribution of Transferability scores by system type 

System by technology comparisons. The technology used in developing the application 

system may be more important than the type of system itself in determining its Health Factor 

scores. In fact, there is a relation between the type of system and the technology used to 

develop it. Most core transaction systems, especially in financial services and insurance, have 

been developed in COBOL. ABAP is primarily used in ERP systems. Customer-facing websites 

and enterprise portals are most often built in Java-EE. 

To investigate these interactions, ANOVAs were conducted on a single type of system 

developed in several technologies. As reported in Table 14, with a few exceptions (n.s. = not 

statistically significant), core transaction systems and customer-facing websites built in Java-

EE were found to have significantly higher Health Factor mean scores that those developed 

in COBOL. Similarly, with the exception of Security, enterprise resource planning systems 

built in Java-EE posted higher mean scores than those developed in ABAP. The percentages 

of variance explained in these comparisons were often 10% or greater and explain why the 

variance explained by system type is low. In essence, differently developed technologies 

create substantial variance in structural quality results within a system type. Therefore, when 

benchmarking, it is critical to compare against similar technologies to gain useful insights. 
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Table 14. Means and variance explained in Health Factors by technologies within 

system types (n.s. means not statistically significant) 

4.4 Source 

Differences among mean scores on each Health Factor for applications developed in-house 

versus outsourced were compared in an ANOVA. The ANOVAs were conducted separately 

within each technology, with at least 40 applications in each sourcing category. Table 15 

summarizes the mean scores on each Health Factor within each technology. Eleven of the 

15 comparisons across Java-EE, COBOL, and .NET were statistically insignificant. The four 

analyses that achieved statistical significance, three of which were in Java-EE, accounted for 

little of the variation in scores. Of those four, two involved differences in Transferability 

scores. Even in COBOL and .NET, where differences in means appear meaningful, the size of 

the variation among scores kept these differences from being significant. Thus, the choice 

between in-house and outsourced development made little difference in the Health Factor 

scores in the CRASH sample. 
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Table 15. Means and variance explained in Health Factors by source 

4.5 Shore 

Differences among mean scores for each Health Factor for applications developed offshore 

were compared in an ANOVA. The ANOVAs were conducted separately within each 

technology, with at least 40 applications in each shoring category. Table 16 summarizes the 

mean scores for each Health Factor within each technology. All comparisons for Java-EE and 

.NET were statistically insignificant. However, we observed statistically significant differences 

for COBOL applications, with particularly large differences in Transferability. In fact, as we 

can see in Figure 23, three-quarters of the onshore applications scored in the bottom quartile 

of the offshore applications for Transferability 

Because of their age, most COBOL applications were likely developed onshore, and some 

were then sent offshore for maintenance and enhancement. As presented in Section 4.2, 

COBOL applications usually post among the lowest Health Factor scores. A possible factor 

affecting the decision to offshore COBOL applications, especially if they are core transaction 

systems, is to reduce operational risk when their transferability to offshore groups is 

hampered by hard-to-understand code. Whether work was done offshore or onshore made 

little difference for applications developed in modern technologies. However, for COBOL 

applications, the decision appears to involve structural quality implications, especially in 

terms of transferability. 
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Table 16. Means and variance explained in Health Factors by shore 

Figure 23. Distribution of Transferability scores by shore for COBOL 
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4.6 Geographical Region 

Differences among mean scores for each Health Factor for applications developed in 

Continental Europe, the United Kingdom, the United States, and India were compared in an 

ANOVA. The ANOVAs were conducted only for Java-EE applications since that was the only 

technology for which there were at least 30 applications in each country. Table 17 

summarizes the mean scores on each Health Factor in each country. The comparisons for 

Robustness, Security, and Transferability were statistically significant.  However, only the 

comparison for Security accounted for more than 5% of the variation in scores. 

Table 17. Means and variance explained for Health Factors in Java-EE by country 

The distributions of Security scores in Java-EE applications are presented by region in Figure 

23. Regional differences accounted for 5% of the variation in Security scores.  Post hoc tests

revealed that Continental Europe had the highest Security scores, while the UK and US had

the lowest scores.  The variation of Security scores from applications in the United States is

especially wide.  Figure 24 does not include distributions for Robustness and Transferability

scores since they accounted for only 1% of the variation in scores.

The higher Health Factor scores achieved by applications developed and maintained in 

Continental Europe were investigated for explanations, but unfortunately, within the data 

available, no explanatory patterns were evident. One possibility is that Continental Europe 

was CAST’s first market and companies in those countries have been working with Health 

Factor feedback longer and have had more time to improve applications. 
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Figure 24. Distributions of Robustness, Security, and Transferability scores by region 

4.7 Organizational Maturity 

Differences among mean scores on each Health Factor for applications developed under 

different levels of organizational maturity were compared in an ANOVA. Organizational 

maturity was measured as reported appraisal results using the Capability Maturity Model 

Integration (CMMI) framework. Java-EE was the only technology for which there were enough 

appraisal results to conduct an analysis. Even so, there were 27 or fewer applications at each 

maturity level, and there were so few from high maturity organizations that this analysis only 

covers CMMI Levels 1-3. The analysis outcomes should be treated as suggestive of trends, 

since the samples in each category fell below the desired level of 40 applications. 

Table 18 summarizes the mean scores for each Health Factor at each CMMI Level for 

applications developed in Java-EE. All comparisons were statistically significant and 

accounted for between 12% and 28% of the variation in scores. The percentages of variation 

accounted for could be somewhat enhanced by the smaller number of applications in this 

analysis. Nevertheless, the Health Factor score distributions in Figure 24 present a consistent 

picture of how organizational maturity affects structural quality. 
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Table 18. Means and variance explained in Health Factors by CMMI Level 

Since the patterns are virtually identical across all Health Factors, all 5 graphs have been 

combined into Figure 25. Post hoc analyses indicated that all significant differences resulted 

from the lower scores for CMMI Level 1 compared to Levels 2 and 3. In fact, almost ¾ of the 

Robustness scores for applications developed in CMMI Level 1 organizations fall into or 

below the lowest quartile of Robustness scores for applications developed in CMMI Level 2 

and 3 organizations. A similar pattern was observed for Security scores where ½ half of the 

Security scores for applications developed in Level 1 organizations fall into or below the 

lowest quartile for applications developed in Level 2 or 3 organizations. 

Performance Efficiency and Transferability scores showed the same pattern, but not as 

strongly as the Robustness and Security distributions. The distribution of scores for 

Changeability was different from that of the four other Health Factors. Post hoc tests 

revealed that the Changeability means for all three levels were significantly different from 

each other. While the mean for Level 3 was higher than that of Level 1, the mean for Level 3 

was lower than that of Level 2, even though the medians were close. It is not clear what 

caused the spread in the lower tail of the Changeability distribution of Level 3 applications. 
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Figure 25. Distribution of Health Factor scores by maturity level 

These results are not surprising since CMMI Level 1 environments are characterized by 

uncontrolled commitments and baselines. Developers are frequently overworked on 

unrealistic schedules. Consequently, they make lots of mistakes without having adequate 

time to detect and correct them. The lower scores for applications developed in CMMI Level 

1 organizations reflect these conditions. 

When organizations achieve a CMMI Level 2 capability, those in charge of projects or 

applications gain control of the commitment and baseline processes. Consequently, projects 

can plan and protect the time required to perform disciplined development. As a result, the 

structural quality of their work improves. Since CMMI Level 3 focuses on collecting best 

practices by implementing Level 2 capabilities and integrating them into a standard 

organizational process, the improvement made in achieving Level 3 status is one of 

organizational efficiency in an economy of scale, rather than one of developer performance. 
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Consequently, the primary improvement in structural quality occurs as organizations move 

from CMMI Level 1 to Level 2. 

4.8 Development Method 

Differences among mean scores on each Health Factor for applications developed using 

different development methods were compared in an ANOVA. Java-EE was the only 

technology for which there were enough reports of the method used to conduct analyses. 

Although there were only 20 applications reporting that no method was used, this category 

was retained to serve as a baseline. 

Table 19 summarizes the mean scores for each Health Factor within each method. Four of 

the five comparisons were statistically significant. Differences among methods had their 

strongest effects on Robustness and Changeability, where they accounted for 10% and 14% 

of the variation respectively. Although the pattern of mean Security scores was similar to the 

other Health Factor means, as is evident in Figure 26, the larger variation in scores masked 

differences among Security means. 

Table 19. Means and variance explained in Health Factors by development method 

Post hoc tests revealed that the significant results in these data were a result of the fact that 

hybrid methods universally earned the highest scores and no method generally earned 

lower scores. The Health Factor differences between Agile and Waterfall methods were 

small, with both consistently earning lower scores than hybrid methods. The consistently 

better structural quality results for hybrid methods likely result from their combination of up 

front analysis and design of application architecture, as well as their rapid feedback on 

defects during short, iterative sprints. This allows developers to address system and 
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architectural level quality issues early, and then detect more granular issues as code is 

developed. 

Figure 26. Distributions of Health Factor scores by development method 

4.9 Team Size 

Differences among mean scores for each Health Factor for applications developed by teams 

of different sizes were compared in an ANOVA. Java-EE was the only technology for which 

there were enough reports of team size to conduct analyses. Although there were only 29 

applications reporting a team size of 6 to 10 developers, this category was retained for 

continuity. 
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Table 20. Means and variance explained in Health Factors by team size 

Table 20 summarizes the mean scores for each Health Factor for each team size. Four of the 

five comparisons were statistically significant. Differences in team size had moderate effects 

accounting for 5% to 8% of the variation respectively. Post hoc tests revealed that these 

differences primarily involved lower means for teams of more than 20 developers, except 

for Performance Efficiency, where teams of 11 to 20 developers posted the lowest mean 

scores. As we can see in Figure 27, the variation in Health Factor scores for all categories of 

team size tended to be larger for Security and Performance Efficiency. 
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Figure 27. Distributions of Health Factor scores by team size 

4.10 Number of Users 

Differences among mean scores for each Health Factor for applications serving different 

numbers of users were compared in an ANOVA. Java-EE was the only technology for which 

there were enough reports of user numbers to conduct analyses. Since applications in the 

CRASH tended to be business-critical applications, most served over 5000 users, which 

indicates that they were customer-facing in most cases. The two categories between 501 and 

5000 users had 30 or fewer applications each, so the wide variation in sample sizes warrants 

some caution in interpreting results. 

Table 21 summarizes the mean scores for each Health Factor for different numbers of users. 

Four of the five comparisons were statistically significant. Differences in number of users 

were small, accounting for 3% to 5% of the variation respectively. Post hoc tests revealed 

that these differences primarily involved higher means for applications with over 5000 users, 

although in the case of Robustness and Performance Efficiency means for applications 

serving 5001 to 1000 users were close to those serving over 5000. As we can see in Figure 

28, the variation in Health Factor scores for all categories of users served tended to be larger 

for Security and Performance Efficiency. 
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Table 21. Means and variance explained in Health Factors by number of users 

Figure 28. Distributions of Health Factor scores by number of users 
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5 Conclusions 

5.1 Summary of Results 

The findings from the 2017 Appmarq sample are believed to be generalizable to the larger 

population of business-critical applications. The heaviest concentrations of applications 

came from financial services, insurance, telecommunications, and manufacturing. 

Applications in a broad range of technologies were analyzed, but they were most often- 

developed in Java-EE, COBOL, .NET, and ABAP. The most frequent types of applications in the 

2017 Appmarq sample were core transaction processing, enterprise resource planning, 

customer-facing websites, and enterprise portals. Not surprisingly, there were associations 

between the types of application systems and the technologies in which they were 

developed. 

Although not exactly comparable because of different numbers of rules defined for each 

Health Factor, scores for those related to operational risk (Robustness, Security, 

Performance Efficiency) were higher than those related to cost/maintainability 

(Changeability, Transferability). Scores on Security varied widely, with some of the highest 

and lowest scores recorded. Analysis at the level of individual violations of quality rules 

indicated that greater compliance was observed for system-level, critical, and operational 

risk related rules. 

The size of the application in lines of code had negligible effects on Health Factor scores. 

However, the relationships between operational risk and cost/maintainability Health Factors 

seem to have increased because of programming styles affected by the smaller module sizes 

used in modern development technologies. 

Several factors were found to have significant influence on the structural quality of business 

applications. Table 22 presents a summary of the effect sizes for each application, in terms 

of percentage of variation, explained in Health Factor scores by the demographic category 

into which the application fell. Differences in technology were found to have a sizeable effect 

on Robustness, Performance Efficiency, and Changeability scores. Since different numbers 

of quality rules were measured for different technologies, the remainder of the demographic 

factors were evaluated separately within technologies that had enough applications in the 

various categories of each demographic to support statistical analysis. Only Java-EE 

contained enough applications in each category of each demographic factor to support 

analysis of all the factors. To support better comparability, Table 22 only reports the percent 

of variance in results for Java-EE applications. 
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Table 22. Effect size comparisons among demographics affecting Health Factors in 

Java-EE 

When compared across Java-EE applications, the demographic factors with the largest 

impact on Health Factor scores were organizational maturity and development method. 

Smaller effects were found for team size, industry segment, and number of users. The type 

of application— whether it was developed in-house or outsourced, or whether it was 

developed onshore or offshore—made little difference to Health Factor scores. 
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5.2 Recommendations 

The following recommendations emerge from the 2017 CRASH Report: 

1. Benchmarking should be conducted within technology and type of application in order

to gain accurate insight into comparable performance. Results from benchmarking

purely against industry segment can be misleading because of effects by other factors

with greater influence that may vary across organizations.

2. Greater attention must be given to secure coding practices as many applications had

scores that were unacceptably low. Security scores displayed wider variation than those

of any other Health Factor.

3. To improve Health Factor scores, organizations must improve the maturity of their

development processes and practices. Low maturity organizations consistently posted

lower Health Factor scores.

4. Adopt hybrid methods for developing business critical applications. Hybrid methods

achieved higher Health Factor scores than both agile and waterfall methods by

integrating up front architectural analysis with rapid feedback on the quality.

5. Avoid creating teams of over 20 developers. Teams of less than 10 appear to be optimal.

6. When considering outsourcing or off shoring, pay attention to factors that are shown to

affect structural quality, such as organizational maturity, development method, or team

size, since these factors have greater influence than the source or shore of development.

7. Analyze source code on a regular basis prior to release to detect violations of quality rules

that put operations or costs at risk. System-level violations are the most critical since they

cost far more to fix and may take several release cycles to fully eliminate.

8. Treat structural quality improvement as an iterative process pursued over numerous

releases to achieve the optimal quality thresholds.

While adopting these evidence-based recommendations cannot guarantee high structural 

quality, they have been shown empirically to be associated with higher quality applications. 
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About CAST 
CAST is the software intelligence category leader. CAST technology can see inside custom applications with MRI-like 
precision, automatically generating intelligence about their inner workings - composition, architecture, transaction 
flows, cloud readiness, structural flaws, legal and security risks. It’s becoming essential for faster modernization for 
cloud, raising the speed and efficiency of Software Engineering, better open source risk control, and accurate 
technical due diligence. CAST operates globally with offices in North America, Europe, India, China.
Visit castsoftware.com.

CAST Research Labs 
CAST Research Labs (CRL) furthers the empirical study of software implementation in business technology. 
We provide practical advice and periodic benchmarks to the global application development community, as 
well as interacting with the academic community. Through scientific analysis of large software applications, we 
focus on providing insights that can improve application structural quality at the architectural and code unit 
levels. We also provide guidance on managing technical debt and improving developer, project, and 
organizational productivity. 

Since 2007 CRL has been collecting metrics and demographic characteristics from custom applications deployed by 
large, IT-intensive enterprises across North America, Europe and India. This unique dataset is stored in the 
CAST Appmarq benchmarking repository. 

The CAST Application Intelligence Platform 
CAST Application Intelligence Platform (AIP) is an enterprise-grade software quality analysis and measurement 
solution designed to analyze multi-tiered, multi-technology applications for technical vulnerabilities and 
adherence to architectural and coding standards. The intelligence generated by CAST AIP provides: 

 An analysis of technical debt to guide application development teams in improving these complex
systems

 Insight into risks associated with upgrading software packages, coupled with automated and detailed
technical documentation of these complex, legacy systems

 The real-time information needed to improve application health and development team performance

http://www.castsoftware.com/
http://www.castsoftware.com/research-labs/overview
http://www.castsoftware.com/products/application-intelligence-platform
https://www.castsoftware.com/
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Contact

United States Europe 

321 W. 44th St., Suite 501 

New-York, NY 10036 

USA 

+1 212 871 8330

3, rue Marcel Allégot 

92190 Meudon 

France 

+33 1 46 90 21 00

castsoftware.com 

http://www.castsoftware.com/



