
CRASH Report on
Application Security

A cross-industry benchmark on application security

vulnerabilities based on Common Weakness

Enumeration (CWE) analysis.

RESEARCH LABS

Don’t let one bad apple
spoil the bunch

CAST RESEARCH LABS www.castsoftware.com

The CRASH Report Sample

Rule Checks
67M�

WeaknessesApplications

1,388� 1.3M�

278M�

02� 39 CWE

Lines of code

Technologies 39�CWE Rules

Definitions

Opportunity : CWE :

A violation caused by a coding mistake

or non-secure coding practices.

KLOC :

One thousand lines of code.An opportunity to make a coding mistake or

introduce a vulnerability through non-secure

coding practices.

CAST RESEARCH LABS 02 www.castsoftware.com

CAST Research on Application Software Health (CRASH)

What is CRASH?

The CWE is a repository of known security

weaknesses in software architecture, design or

code. CWE serves as a standard way to measure

an organization’s defense against these common

security weaknesses while providing a baseline

standard for weakness identification, mitigation

and prevention efforts.

What is the Common Weakness
Enumeration from MITRE?

The CRASH Report Sample Distribution by Size

0
10.000 -
19,999

20.000 -
49,999

50

100

150

200

250

50.000 -
99,999

100.000 -
199,999

200.000 -
499,999

500.000 -
999,999

1,000.000 -
5,000,000

5,000.000 -
10,000,000

N
u
m
b
e
r
o
f
a
p
p
li
c
a
ti
o
n
s

Lines of code

Java - EE .NET

Application Size Does Not Affect Opportunity or CWE Density

Unsurprisingly, the greater the number of

opportunities for violating a CWE rule in an

application, the more CWE weaknesses that

occur. Both of these highly correlate with an

application’s size (total lines of code).

HHowever, the density of CWE weaknesses and

opportunities are not correlated with an

application’s size, except for a small

relationship with opportunity density in .NET.

Although the size of an application affects the

total number of CWEs, the density of CWE

weaknesses is driven by other factors.

Probability the relationship occurred by chance:

 1 in 20, ** � 1 in 100, *** � 1 in 1000

Opportunities

Opportunities
Density

CWEs

CWE density

Lines of code

Opp.

Opp.
Density

CWEs

CWE
density

Lines
of code

26 %
13 %

0 %
1 %

1 %
6 %

6 %
17 %

42 %
23 %

0 %
1 %

0 %
0 %

67 %
67 %

0 %
1 %

3 %
11 %

Java-EE (956 apps)

.NET (431 apps)

J-EE - 957 apps / .NET - 431 apps

“It’s not the size of the apple that matters.”

CAST RESEARCH LABS www.castsoftware.com03

The Density of CWE Weaknesses Varies by Language

Although the distributions of opportunities for

CWEs across the wide range of application sizes

were similar for both Java-EE and .NET, the

distributions of CWE weaknesses were

significantly different (< 1 in 1000 by chance).

.NET had a higher mean density of CWE

weaknesses, as well as greater variance in CWE

density sdensity scores and a wider range.

Since the medians were similar, the difference in

means indicates a far greater range of CWE

weaknesses in .NET, some having a density of

greater than 35 weaknesses per KLOC. 0

5

10

15

20

25

30

35

C
W
E
s
p
e
r
K
L
O
C

outlier

+2σ

75th %ile

Mean

Median

25th %ile

-2σ

σJava-EE .NET

Application Security by Industry Segment

Financial Services, Telecom, and IT Consulting had the highest

mean CWE densities. Energy and Utilities had the lowest

CWE densities as well as the least variation in CWE density

scores. The differences between the means of the industries

with the lowest and highest CWE density scores is almost a

factor of 2, as are differences in the sizes of their interquartile

ranges (25th to 75th percentile scores). While all industry

segments had mean CWE density ssegments had mean CWE density scores below 5 CWEs per

KLOC, all but Energy had applications containing more than

10 CWEs per KLOC.

The pattern in .NET applications was different than in

Java-EE. Mean CWE density s cores were almost twice as

high in Energy, Insurance, IT Consulting, and Manufacturing

compared to their scores for Java-EE applications. In most

industry segments, variation in CWE densities was much

larger than in .NET. While most applications across

industry have less than 5 CWEs per KLOC, there are many

applicapplications well above this density, ranging into the 20s

and even 30s per KLOC, presenting serious security risks.

 “Some apples fall way too far from the tree.”

Java - EE .NET

0

5

10

15

20

25

30

35

CWEs per KLOC

Energy (n = 39)

Financial Services

(n = 324)

Government
(n = 49)

Insurance

(n = 82)

IT Consulting
(n = 60)

Manufacturing

(n = 19)

Energy (n = 39) Government
(n = 49)

IT Consulting
(n = 60)

Retail

(n - 43)

Software ISV

(n = 38)

Telecom

(n = 136)

Utilities

(n = 43)

0

5

10

15

20

25

30

35

CWEs per KLOC

Energy (n = 32)

Financial Services

(n = 141)

Insurance

(n = 53)

IT Consulting
(n = 52)

Manufacturing

(n = 30)

Pharmaceuticals

(n = 13)

Retail (n = 20)

Software ISV (n = 24)

Telecom (n = 22)

Interpretation

 = standard deviation

CAST RESEARCH LABS www.castsoftware.com04

Application Security Differed

Among Application Types in .NET

CWEs per KLOC :.NET

Mean CWE density scores among types of applications

were not significantly different in Java-EE. However in

.NET significant differences among the application

types accounted for 5% of the variation in density

scores.

ERP and Analytics (ERP and Analytics (too few apps) had the highest CWE

densities per KLOC among the application types. The

variation in density scores was also much larger in these

two application types.’

CuCustomer Website, Customer Resource Management

(too few apps), and Enterprise Portals had the lowest

CWE density scores. However, they still had some high

density outliers.
Analytics (n = 19)

Core Transaction
(n = 58)

Cust. Res. Mgt.
(n = 14)
Customer Website
(n = 47)

Cust. Res. Mgt.
(n = 14)
Customer Website
(n = 47)

0

5

10

15

20

25

30

Application Security by Development

Methodology - In .NET, the Worst

Apples Are Found at the Bottom

of the Waterfall

CWE density across Java-EE applications was fairly

consistent for applications developed with

agile/iterative, hybrid (agile/waterfall mix), or waterfall

methods. Although applications developed without a

method appeared to have higher CWE densities, there

were not enough ‘no method’ applications for these

differences to be statistically significant.

NENET, however, had statistically different results even

though the samples sizes were smaller than desired.

While applications developed with Agile, Hybrid, or No

Method were quite similar in CWE density, the density

of security weaknesses exploded in those developed

with Waterfall methods. In fact, 75% of CWE densities in

applications developed with other methods would fall in

the lthe lower half of those developed through a waterfall.

Thus .NET applications developed in a waterfall are

particularly prone to cyber-attacks and exploit.

CWEs per KLOC :.NET

0

5

10

15

20

25

30

Agile / Iterative
(n = 26)

Hybrid (n = 18)

Waterfall (n = 35)

No Method (n = 14)

CAST RESEARCH LABS www.castsoftware.com05

